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ABSTRACT: Under some conditions, behavioral research includes statistical tests to assess the
probability of experimental outcomes. Occasionally, sample sizes are insufficient to fulfill the
assumptions of traditional parametric procedures. The following study assessed the statistical
advantages, correspondence, and accuracy of univariate analyses when small-n samples are
calculated in both randomized and traditional/parametric formats. Specifically, we compared
probability values for both parametric and randomized two-sample independent t-tests across a series
of Monte Carlo, pseudorandom two-group data sets of equal size. In doing so, we identified some
patterns of probability change associated with decreasing group size.

Occasionally, applied and basic research in behavior analysis entails statistical
tests of group data (e.g., Hayes, Bissett, Korn, Zettle, Rosenfarb, Cooper, &
Grundt, 1999). However, many behavioral preparations that compare group data
may not have sample sizes large enough to conform to the assumptions of normal
curve theory (e.g., Miller, & Armus,1999). While behavioral research always will
be based in single-subject design (Sidman, 1960), it has become increasingly
common for researchers to employ small groups in their experimental preparations,
particularly in studies relating to equivalence and human computer-interaction
effects. For example, if researchers were interested in the effects of prior learning
on equivalence class formation, outcomes might be analyzed in terms of individual
correct responses and differences in group performance on various tasks (e.g.,
Peoples, Tierney, Bracken, & McKay, 1998). Researchers assessing the potentially
reinforcing effects of various forms of computer feedback might assess behavior
change in terms of individual and small group performance across conditions (e.g.,
Ninness, Rumph, McCuller, Bradfield, Saxon, & Calliou, 2001).

Until very recently, behavior analysts had a rather limited range of
nonparametric options when employing small-n experimental designs. Statisticians
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are the first to point out that most conventional nonparametric tests show weak
sensitivity to treatment effects with small-n data (e.g., Todman & Dugard, 2001).
Nevertheless, parametric procedures are not considered a viable option since there
are limits as to how small group sizes can be before the probabilities based on
parametric tests become unreliable. In fact, the authors of many basic and
advanced texts admonish readers that good applied and basic research requires
“fairly” large n’s. For example, Sowell (2001) notes that “samples of at least 30 or
more participants” (p. 131) are required to have confidence in obtained statistical
probabilities. Roscoe (1975) affirms that n’s of 20 to 25 appear to be the absolute
minimum for a reasonable likelihood of finding significant differences in treatment
effects. And, Hopkins, Hopkins, and Glass (1996) indicate that when sample sizes
are small, the sampling error is greatly increased; it is not until sample size
approaches 25 that the t-distribution begins to mimic the normal curve. This
perspective has often inhibited the development, credibility, and publication of
empirical research that employs relatively small numbers of participants (see
Ninness, Rumph, and Bradfield, 2001, for a discussion).

However, there is a body of sophisticated, reliable, and precise statistical
strategies that do not entail any underlying assumptions regarding random and
independent sampling, homogeneity of variance, or normality. As described by
Edgington (1995), a randomization test is a permutation test that precludes all
assumptions regarding how data are collected. Randomization tests are a series of
mathematical operations providing a test statistic to be repeatedly computed for all
possible permutations of a given data set (Ninness, McCuller, & Ozenne, 2000).
The proportion of outcomes that occur with as large a probability as those that are
actually obtained determines the statistical likelihood of group differences, or trend
changes, occurring by chance. Using these conservative but mathematically precise
systems, researchers who calculate the probability of their research findings on a
small number of subjects need not speculate as to whether their data base is of a
sufficient group size or whether it has been randomly obtained. The randomization
test calculates all possible ways that the results could have occurred, given the data
at hand, and it identifies how likely it is that the obtained differences could have
occurred by chance (see Good, 1994, for a discussion). Randomization tests, even
more than parametric tests, emphasize the importance of random assignment of
participants to treatments (Efron & Tibshirani, 1993). Sample size is completely
irrelevant to the internal validity of the test statistic; however, as with all other
statistical procedures, external validity can only be gauged by addressing the
logical probability that other populations share the relevant characteristics of the
sample.

As a practical matter, consider a study in which 8 students are selected from a
special education classroom and randomly assigned to either direct instruction or
control conditions. Following treatment, the four students receiving direct
instruction obtain reading scores of 86, 90, 92, and 94, and the four controls score
70, 80, 80, and 83 respectively. If this data were run according to conventional
parametric procedures, the two-tailed t-test would reject the null hypothesis at the
0.01 level of significance. While this calculation would be statistically significant,
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it would also be considered highly inappropriate given the small sample size. Yet,
it is equally inappropriate to suppose that there is no reasonable strategy to
determine the probability of the given scores occurring by chance. By precluding
any assumptions that the data is representative of some larger population from
which it is drawn, a randomization test will calculate that the exact probability of
the above outcomes. Specifically, a randomization test will demonstrate that the
exact probability of this outcome occurring by chance is 0.028 (see Edgington,
1995 for a similar example). Such an outcome makes no inferences or speculations
about other populations not included in the study. The probability of these scores
occurring by chance is identified exactly, and the scientific and social implications
are clear for behavior analysts who conduct small-n studies. Unless small group
researchers are able to employ powerful and precise data analyses, their findings
will not have credibility in larger academic arena. Randomization tests have
mathematical credibility, and they are powerful. However, until quite recently,
they have not been available.

These procedures have been understood and appreciated by generations of
mathematical statisticians; however, prior to the relatively recent advances in and
access to high speed computers, these procedures were far too time consuming,
inefficient, and expensive for most practical applications. Edgington (1995) points
out that as few as 30 subjects placed into 3 groups may generate over 5 trillion data
permutations that must be calculated to obtain exact levels of significance for some
versions of the randomization test. Only a few years ago, this would have been an
exceedingly long and expensive calculation (see Manly, 1997, for a detailed
discussion). Ironically, it is still popularly believed that randomization tests entail
long and unmanageable computer computations for the purposes of most applied
researchers (e.g., Williams, Zumbo, & Zimmerman, 2001).

Irrespective of computational complexity and duration, statisticians have been
exploring this permutation and randomization test for some time. Pitman (1937)
provided much of the theoretical foundation for randomization tests and
experimental permutation tests; however, he noted that the primary concepts in
randomization are embedded in Fisher’s writings of the same period (Fisher, 1936;
Savage, 1976). Still, only terse and indirect reference is made to these procedures
in the early decades of statistical computing (e.g., Winer, 1971).

With recent improvements in processing speed, Manly (1997) has shown that
randomization tests and conventional parametric procedures provide “roughly” the
same probabilities if the samples approximate normality and the assumptions of
homogeneity and independence are not violated. He advances research by Romano
(1989) showing that randomization tests arrive at essentially the same levels of
significance when large samples are employed and violations of assumptions have
not occurred. Moreover, as noted by Edgington (1995), randomization tests usually
generate more power than conventional procedures when data points are not
normally distributed. This point has been supported by Peres-Neto and Olden
(2001), who demonstrated that randomization tests produced the best type I error
rates when compared to probabilities generated by classical ANOVA and the
Kruskal-Wallis test.
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To more fully address this issue, we developed a Monte Carlo method study
based on uniform data. Monte Carlo method refers to a general type of computer
simulation of behavioral or physical events for a very large number of occurrences.
It is not unusual for Monte Carlo methods to run 10,000 variations on the behavior
of a single variable (see Manly, 1997, for a discussion). This increasingly popular
experimental tool allows researchers to model and explore more complex systems
than could ever be revealed in natural contexts. Using a blend of random number
generators and probability theory, behavior patterns are generated and analyzed in
every conceivable (and inconceivable) distribution; however, the details of any
particular Monte Carlo software system will be tied to the particular interests and
needs of a given researcher. Generally, there are several commonly employed
strategies in comparing statistical procedures with Monte Carlo methods. One
strategy is to construct asymmetrical distributions that reflect values consistent
with preestablished differences between groups. If a particular statistical test
demonstrates good performance in a large number of simulations, it is reasonable
to assume that the procedure would be functionally accurate and powerful when
applied to real data.

Recent Monte Carlo research seems to suggest that randomization tests appear
to be generally more robust to violation of the statistical assumptions associated
with parametric and classic nonparametric approaches (Peres-Neto & Olden,
2001). Another strategy is to simulate and manipulate data based on previous
studies that have demonstrated significance and high levels of internal validity
(Taylor & Gerrodette, 1993). Alternatively, one can assume that, given a large
number of computer-generated random scores, probabilities (P-values) for group
differences should be normally distributed and 5% of these P-values should fall at
or below a α set at .05. This system lends itself to directly correlating all outcomes
obtained from different types of statistical tests. It allows direct point-by-point
comparisons of all P-values obtained from two or more statistical tests, and it
provides a measure of accuracy of the statistical tests in approaching specified α
levels.

Presently, it is unclear as to how parametric and randomization procedures
systematically correspond or differ across decreasingly small group sizes. Thus,
researchers who employ small n’s have no way of knowing how levels of
significance obtained by randomization tests might correspond with those obtained
by traditional statistics. The following study assessed the statistical advantages,
correspondence in probabilities, and accuracy of applied univariate statistical
procedures when calculated according to both randomized and
traditional/parametric formats. Specifically, we compared P-values for
Randomized t-tests and classical Student’s t-tests across an array of Monte Carlo
generated groups.
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METHOD

Apparatus and Software

The research was conducted on a Dell Inspiron 5000e laptop computer (700
MHZ processor and 512 MB RAM) with a 14-inch screen. Statistical and Monte
Carlo method software was written by Chris Ninness in C++ and Visual Basic 6
for IBM PC compatible machines; however, the original randomization test
algorithms were developed in Fortran by Edgington (1995) and adapted to run in
the C++ language as developed and described by Ninness, Rumph, & Bradfield
(2001). Since we employed multiple trials for each data set, our random number
generator was seeded by the computer’s clock, and each file in the Monte Carlo
series was identified and seeded by increments to the nearest nanosecond.
Algorithms were audited and refined by LCSDG, LLC. (Several of our current
C++ versions of randomization test procedures are freely available to all academic
researchers on-line at www.lcsdg.com/psychStats.)

Experimental Design and Procedures

This study obtained changing P-values associated with group differences
using equal n’s of decreasing sample size. To evaluate the effect of sample size on
t-test P-values, our pseudorandom number generator produced 1,000 sets of scores
(ranging from 00 to 99) for groups with equal n’s of 12, 10, 8, 6, and 4. Following
the development of these Monte Carlo data sets, P-values for the randomized t-
tests and parametric t-tests were obtained, correlated, and graphed. The percentage
of randomized t-test P-values and parametric t-test P-values that fell at or below α
(set at .05) was identified for each of these distributions. To determine reliability of
these algorithms, a second set of scores was generated, and the same calculations
were conducted on all 5 group sizes.

RESULTS

Figure 1 shows the scatterplot, correlation, regression line, and percentages of
P-values that fell at or below .05 for group sizes of 4 in each group on parametric
and randomized t-test procedures. In the first generation of 1,000 data sets of size
4, P-values for randomized t-tests and parametric t-tests correlated at .9853. Here,
6.2% of the obtained parametric probabilities fell at or below the truncated .05 α,
while only 4.3% of the randomized P-values were at or below this level. Figure 1
also shows the same information for n’s of 6 with a conspicuous improvement in
the amount of scatter along the regression line. P-values correlated at .9987, with
5.5% of the parametric outcomes were at or below the designated α level. The
randomized t-test obtained 4.7% of the corresponding probabilities below α. In
both conditions, the randomized t-test probabilities that fell at or below .05 always
corresponded with those identified by the parametric t-test; however, some of the
parametric probabilities slightly exceeded the .05 (see circled areas on Figure 1).
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Figure 2 shows the scatterplot, correlation, regression line, and percentages of
P-values that fell at or below .05 for group sizes of 8 on parametric and
randomized t-test procedures. P-values were correlated at .9998, with 5.9% of the
obtained parametric probabilities falling at or below the .05 α level and 5.5% of
the randomized P-values at or below this level. Since the scatterplot produced from
group sizes of 10 was not visually distinct from that of 8, it is not displayed; the
correlation between parametric and randomized t-test probabilities was found to be
.9994, and the associated α levels were found to be at 5.1% and 5%, respectively.

Figure 2, which provides information for group sizes of 12, shows no
measurable scatter along the regression line. Here, P-values correlated at 1.0
(computer calculations were automatically rounded up from .9999). In this graph,
5.2% of the parametric t-test outcomes were at or below the designated α level.
The randomized t-test found 4.9% of the corresponding probabilities at or below α.
We replicated all of the above functions and found the resulting correlations to be
within .001 of our initial calculations for all 5 group sizes.

DISCUSSION

For large-n data, there is very little enthusiasm in the mainstream behavioral
sciences for finding alternatives to the conventional statistical tests (Todman &
Dugard, 2001). However, as a researcher’s sample size shrinks, so do the
researcher’s probabilities of finding acceptable data analysis systems, external
funding and outlets for publication. The theoretical and social implications are
clear to those who have tried to obtain support and disseminate their findings in the
mainstream. Until quite recently, it has been gratuitously assumed that small-n
studies could not stand up to a test of probability and a substantial portion of
behavioral research has been disenfranchised by the mainstream of social sciences.
High-speed computers and randomization tests have made this assumption
untenable and obsolete.

Consistent with the recent outcomes of Peres-Neto and Olden (2001), we
found little or no difference between randomized and parametrically derived
probabilities with some group sizes. In fact, the Monte Carlo n of 12 produced a
functionally perfect point-by-point correspondence between these approaches.
However, as group sizes decreased in steps of 2, P-values fell in minor
disagreement. This difference did not become conspicuous until the n’s were
reduced to 6 and 4. Even with these very small n’s, the correlations were at .9987
and .9853, respectively. Interestingly, the randomization P-values always agreed
with those generated by the parametric Student’s t-test, but the inverse was not true
in this study. With smaller n’s, the parametric P-values became inflated above the
designated α level, while the randomized t-test became more and more
conservative. Thus, with n’s less than 12, it appears that the randomized t-test
consistently represents a very conservative but reliable measure of type I error
rates.

Results from this study demonstrate the reliable and strong correspondence
between classical and randomized statistical strategies—at least in terms of the
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commonly employed two-sample independent t-test with equal n’s. Similar to the
way in which means from increasing sample sizes from asymmetrical populations
gradually assume a perfectly normal distribution of means (Hopkins et al., 1996),
increasing sample sizes for randomized and parametric t-tests appears to gradually
generate a perfect correlation between these two approaches.

While a series of strong agreements between parametric and randomized t-test
P-values do not unequivocally prove the power of either test, they do provide a
measure of “inter-test” reliability. Moreover, the fact that we repeatedly identified
randomized t-test P-values that slightly underestimated or very closely
approximated .05 α‘s 5% of the time, suggests that the randomized t-test provides
a practical level of statistical precision for small group comparisons in applied and
basic research.

When comparing parametric and randomized t-tests, sample sizes at or above
12 appear to reach an asymptotic correlation of 1 when employing algorithms
using systematic permutations. This type of randomization test calculates levels of
significance based on all of the possible ways in which data can be permuted
within a given set of scores. The number of data permutations and amount of
computer time for sample sizes above 12 quickly becomes astronomical. However,
Edgington (1995) describes another, less precise random permutation t-test
algorithm that generates P-values by randomly selecting from the set of all possible
test statistics (see Manly, 1997, and Todman & Dugard, 2001, for a discussion of
these algorithms). Future research might explore these algorithms in terms of their
correspondence with conventional statistical tests.

The present study only addresses simulated outcomes generated with one
dependent variable and two groups. Outcomes derived from the two-sample
independent t-test may be very different from those obtained with multiple groups
and multiple independent variables. Nevertheless, these data provide substantial
evidence that applied and basic researchers are well positioned to reliably calculate
levels of significance based on small n’s when using randomization tests.
Nevertheless, it is important to reiterate a point emphasized by Edgington (1995):
the external validity of any experiment can only be gauged by judging the logical
probability that other populations share the relevant characteristics of the
individuals who participated in a given study.

Given the common objection that small-n studies lack internal validity due to
their inability to fulfill the critical assumptions of traditional sampling techniques,
the various types of randomization tests we are placing on
www.lcsdg.com/psychStats may be a logical alternative for behavior analysts who
are interested in determining the precise probability of outcomes based on small
group designs. In closing, we feel compelled to point out that none of the on-line
software we are developing could have been conceivable without the brilliant
algorithms originally developed by Edgington and his colleagues.
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