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ABSTRACT: Historically, behavior analytic research and practice have been grounded in the single 

subject examination of behavior change. Within the behavior analytic community, there remains little 

doubt that the graphing of behavior is a powerful strategy for demonstrating functional control by the 

independent variable; however, during the past thirty years, various statistical techniques have become a 

popular alternative form of evidence for demonstrating a treatment effect. Concurrently, a mounting 

number of behavior analytic investigators are measuring multiple dependent variables when conducting 

statistical analyses. Without employing strategies that protect the experimentwise error rate, evaluation of 

multiple dependent variables within a single experiment is likely to inflate the Type I error rate. In fact, 

with each additional dependent variable examined in univariate fashion, the probability of “incorrectly” 

identifying statistical significance increases exponentially as a function of chance. Multivariate analysis 

of variance (MANOVA) and several other statistical techniques can preclude this common error. We 

provide an overview of the procedural complications arising from methodologies that might inflate the 

Type I error rate. Additionally, we provide a sample of reviewer comments and suggestions, and an 

enrichment section focusing on this somewhat contentious issue, as well as a number of statistical and 

neural network techniques that enhance power and preclude the inflation of Type I error rates.  

KEYWORDS: Type I error rate, multivariate analysis, univariate analysis, inflation, experimentwise error 

rate, neural network, external validity 

Behavior analytic research is grounded in the systematic observation of the single 

participant and an experimental preparation in which graphing the participant’s baseline and 

treatment behavior provides confirmation of findings. Contrasting baseline behavior with 

behavior change occurring during various treatment conditions (and following treatment 

conditions) demonstrates functional control by the independent variable and provides evidence 
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for experimental effect. This special concentration on the individual participant’s moment-by-

moment behavior across conditions stands in contrast with group designs employed in most of 

psychology where the emphasis is on assessment of the “average effect” of a treatment (or 

treatments) within or between experimental and control groups (Roscoe, 1975). As forwarded by 

Ninness et al., (2002), “Sidman (1960) points out that in traditional psychological research, 

subject variability is considered a source of experimental error, while in behavioral research it is 

a source of experimental interest” (p. 64). 

Although behavior analytic research remains firmly grounded in single-subject design, an 

increasingly common practice for behavior analysts is to conduct studies in which the evidence 

for experimental effect lies in determining the level of statistical significance (Ninness et al., 

2002). Indeed, it has become fairly common for behavior analytic researchers (as well as 

researchers in many related disciplines) to examine more than one dependent measure and to 

analyze data by way of traditional parametric and nonparametric inferential statistics (Leary & 

Altmaier, 1980). As described by Stevens (2009), a researcher might be comparing two methods 

of teaching reading to second-grade students. Upon completing the intervention protocol, the 

researcher measures performance relating to basic foundations of “…syllabication, blending, 

sound discrimination, vocabulary, comprehension, and reading rate” (p. 145). Such a study 

entails the assessment of multiple dependent variables analyzed within the same experiment. 

Concepts and Terminology  

Before discussing the above hypothetical experiment and the manner in which its findings 

might be analyzed, a few concepts and terms should be addressed. Tukey (1949) first used the 

term “experimentwise error rate” as a reference to the level of risk for obtaining a false positive 

error when examining all the hypotheses within a group of potentially accurate hypotheses. The 

term “familywise error rate” refers to the same type of risk for arriving at one or more erroneous 

statistical conclusions regarding statistical significance existing somewhere among all of the 

hypotheses being tested within a given experiment (see Šidák, 1967, for a discussion). Statistical 

techniques focused on controlling the experimentwise/familywise error rate are said to be 

“conservative” in guarding against the possibility of inadvertently rejecting the null hypothesis (a 

Type I error). However, employing these conservative statistical techniques reduces the risk of a 

false positive determination at the risk of failing to identify statistically significant findings. The 

term “false discovery rate” refers to a group of statistical techniques that are more liberal in 

allowing researchers to identify statistically significant outcomes, but these techniques exercise 

less rigorous control over the experimentwise error rate and thus increase the likelihood of a 

Type I error (Benjamini & Hochberg, 1995). These strategies are said to have greater statistical 

power in the search for outcomes that could not have occurred simply by chance. Hochberg and 

Tamhane (1987) provide a classic guide to multiple comparison techniques that improve 

statistical power while maintaining reasonable safeguards against inflating the Type I error rate. 

Analyzing Multiple Variables within a Single Experiment  

In the hypothetical experiment described above by Stevens (2009), the multivariate analysis 

of variance (MANOVA) is robust with regard to determining the experimentwise error rate. 

Subsequent to identifying statistical significance that addresses the experimentwise error rate, a 

series of multiple comparison tests are conducted to identify the particular variables showing 

significant differences among all possible hypotheses being tested. Beyond protecting the 
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experimentwise error rate, Stevens (2009) provides additional reasons for employing 

multivariate techniques when analyzing several dependent variables within an experiment: 

1. Any worthwhile treatment will affect the subjects in more than one way. Hence, the 

problem for the investigator is to determine in which specific ways the subjects will be 

affected, and then find the sensitive measurement techniques for those variables. 

2. Through the use of multiple criterion measures we can obtain a more complete and 

detailed description of the phenomena under investigation, whether it is teacher method 

effectiveness, counselor effectiveness, diet effectiveness, stress management technique 

effectiveness, and so on. 

3. Treatments can be expensive to implement, while the cost of obtaining data on several 

dependent measures is relatively small, and maximizes information gain. (p. 2) 

Big Trouble in Small-n 

The fact that in many experimental settings, behavior analysts elect to utilize inferential 

statistics rather than single-subject methodology is not at issue here. Research methodology is 

often a matter of funding authority requirements, personal design preference, or a researcher’s 

particular ambitions for demonstrating external validity. However, it has become common for 

researchers across the behavioral and social sciences to employ univariate statistical tests when 

examining multiple concurrent dependent variables within group designs (Cafri, Kromrey, & 

Brannick, 2010). This practice becomes particularly problematic when the researcher employs a 

limited number of scores within an experiment that is measuring several dependent variables 

concurrently. As discussed in Ninness, Rumph, Vasquez, & Bradfield (2002), “…when small-n 

measures are taken and several dependent variables are analyzed using traditional univariate 

statistics, the internal validity of the study is seriously compromised” (p. 65). That is, while the 

researcher may find a number of dependent variables that appear to be most impressive in terms 

of their apparent levels of statistical significance (P-values), the actual probabilities associated 

with these outcomes are not at all what they appear. Neher (1967) notes that statistical findings 

calculated with multiple dependent variables but analyzed by way of a series of univariate tests 

within the same experiment are, in fact, inflated as a function of “probability pyramiding.” Neher 

states: 

Reporting the 5 percent level for a finding means that there is only a 5 percent chance 

that it is a spurious finding resulting solely from chance variations. If, however, two 

independent analyses are done, the probability that at least one such analysis will yield a 

spurious, significant finding at this level is greater than 5 percent. (The assumption of 

independence of the two analyses, while not always true, simplifies the discussion 

without introducing serious error.) To determine the new probability level, one may 

calculate the probability that a significant result would not be obtained in either of the 

two tries (.95 X .95) and then subtract this from 1. Thus, 1-(.95)
2 
= 1-.902 = .098. If three 

independent analyses are done, the real level becomes 1-(.95)
3
 = 1-.857 = .143. (Each 

individual analysis increases the probability pyramiding, even though it may be part of 

one large 'analysis', such as stepwise multiple regression, item analysis, etc.). (p. 259)  
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Pyramiding Probabilities 

Consistent with the example provided by Stevens (2009), consider a circumstance in which 

five dependent measures are employed in the same study, and separate univariate t-tests are 

performed on each dependent variable. Here, multiple dependent variables are analyzed 

separately in univariate fashion, and each analysis fails to take the other into account. In such a 

cavalier statistical analysis, the use of univariate t-tests inflates the overall Type I error rate, and 

the investigator/s are likely to conclude that treatments are effective in conditions where pure 

chance is operating. In an example described by Ninness et al., (2002), “Employing 5 concurrent 

t-tests, the probability of no Type I errors is: (.95)(.95)(.95)(.95)(.95) ≈ .774 since the chances of 

not making a Type I error for each test is .95. In this example, the likelihood of making at least 

one Type I error is 1 -- .774 ≈ 0.226” (p. 65). When this probability pyramid is developed from 

the top down, each dependent variable adds yet another layer of potential inaccuracy to the 

experimentwise sampling error and increases the researcher’s likelihood of obtaining one or 

more false positives. With each dependent variable added to the analysis, we see layers of the 

pyramid expanding exponentially as the Type I error rate expands. With five dependent 

variables, the researcher’s likelihood of inflating α has expanded from 0.05 to 0.226 (i.e., 1 -- 

.95
5 

≈ 0.226).  

Table 1 shows the gradual progression of false positive P-values for a series of concurrent 

univariate tests. Examining a researcher’s chances of obtaining a false positive when employing 

one dependent variable, the actual probability is, as it should be, at the 0.05 level. However, as 

the researcher pursues additional univariate tests within the same experiment, his/her likelihood 

of finding a significant difference somewhere among all the existing possibilities begins to 

inflate exponentially. If, for example, the researcher were willing to entertain the idea of 

examining ten concurrent univariate tests within the same experiment, which is not an unusual 

occurrence, the process of probability pyramiding becomes all too apparent. As shown in Table 

1, the researcher has a better than 40 percent chance of finding at least one false positive when 

examining all ten possible univariate tests within the same experimental preparation (Stevens, 

2009).  

Monte Carlo Experiments and Type I Errors  

Randomization tests (also described as permutation tests) are computationally intensive 

resampling techniques in which the P-values are repeatedly calculated for all possible levels of 

significance that exist within a specific data distribution (Edgington, 1995; Good, 1994; Ninness 

et al., 2002). The “obtained” P-values are the proportion of all possible data arrangements 

greater than the actual/obtained value for a particular experimental finding.  

Previous to the early 1980’s, randomization tests (and related resampling techniques) were 

not commonly employed since the computations often required more processing speed than the 

existing technology could provide. The mid-eighties witnessed a dramatic increase in computer 

power, and with this computing power came calculation-intensive applications for previously 

unimaginable large and convoluted datasets. Many of these datasets were composed of non-

normal, nonlinear, and nonindependent variables. By 2000, the analyses of computer simulated 

datasets became a highly specialized area of research in its own right. In 2002, we, (Ninness et 

al.), developed several Monte Carlo datasets with two dependent variables in each set. 

Significance tests were conducted by way of a traditional multivariate procedure (Hotelling’s T
2
)  
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Table 1. Increasing Number Dependent Variables with Inflation of the Experimentwise Error 

Rate 

 

Dependent Variables Experimentwise (Type I) Error Rate 

1 1 – .95
1 

≈ 0.0500 

2 1 – .95
2 

≈ 0.0975 

3 1 – .95
3 

≈ 0.1426  

4 1 – .95
4 

≈ 0.1855 

5 1 – .95
5 

≈ 0.2262 

6 1 – .95
6 

≈ 0.2649 

7 1 – .95
7 

≈ 0.3016 

8 1 – .95
8 

≈ 0.3365 

9 1 – .95
9 

≈ 0.3697 

10 1 – .95
10 

≈ 0.4013 

 

 

and by way of randomization tests. Had we not adjusted their obtained P-values by way of a 

Bonferroni algorithm within the randomization test procedure, all of the P-values would have 

shown seriously inflated Type I error rates. However, when we implemented the Bonferroni 

adjustment within our randomization algorithm, the “…correlations between Hotelling’s T
2
 and 

randomization tests were at .95, .95, .94, and .93, for group sizes of 12, 10, 8, and 6, 

respectively” (p. 71). Importantly, since the Bonferroni adjustment procedure was incorporated 

within our randomization test algorithm, we found very little difference in obtained P-values 

when employing Hotelling’s T
2
 versus randomization tests. 

The Empirical Pyramid 

Beyond the findings in the above Monte Carlo experiments, an extremely large body of 

empirical evidence exists demonstrating that with continuing univariate analyses of dependent 

variables, there is a conspicuous inflation of the Type I error rate (cf. Austin & Brunner, 2004). 

Each successive univariate test employed in an attempt to locate yet another statistically 

significant difference among variables within a single experiment makes it more likely that a 

finding of significance is a function of sampling error rather than a function of treatment (see 

Table 1). Just as described by Neher (1967), Stevens (2009), and Edgington (1995), the more 

univariate tests conducted within a single study, the more inevitable it becomes that we will see 

inflation of the probability pyramid (cf. Leary & Altmaier, 1980). 

As ironic as it is exasperating, we now have a virtual library of empirical studies 

demonstrating that the inflation of Type I error rates has become an insidiously pervasive 

problem throughout much of the current behavioral science literature. For example, Baldwin, 

Murray, and Shadish (2005) reviewed 33 publications employing large group experimental 

designs and found that, as a result of violating key assumptions concerning independence of 
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observations, researchers of the 33 studies examined from peer-reviewed journals had conducted 

their statistical methodologies incorrectly. Armstrong and Henson (2005) reviewed 54 articles 

published in the International Journal of Play Therapy and found a continuous stream of 

statistical inaccuracies inflating Type I error rates. Subsequent to recommendations disseminated 

by the American Psychological Association’s Task Force on Statistical Inference (APA, 1996), 

Schatz, Jay, McComb and McLaughlin (2005) reviewed the accuracy of statistical analyses in 

neuropsychology investigations published within the Archives of Clinical Neuropsychology. The 

authors found inflated Type I error rates in 275 of 406 scrutinized publications. They describe 

the incorrect use of null hypothesis testing and associated incorrect determination of P-values as 

a major factor contributing to investigators’ likelihood of inflating the Type I error rate. Schatz et 

al. (2005) state: 

Such error usually occurs because of incorrect statistical procedures and inappropriate 

emphasis on P-values. In most cases, researchers treat each statistical test individually, 

instead of examining the results as a whole, demonstrating a lack of control for Type I 

error. Performing multiple ANOVAs or following a MANOVA with univariate 

ANOVAs without adjusting the alpha level… . (p. 1054) 

Schatz et al. (2005) forward the view that neuropsychologists who conduct empirical 

investigations and publish results in refereed journals must become much more attentive to the 

critical assumptions and theories within the area of inferential statistics. While this study 

revealed an unacceptable level of experimentwise error, the Archives of Clinical 

Neuropsychology should be commended on its willingness to audit its studies and bring this 

pervasive academic complication to the attention of the behavioral science community. 

Threats to External Validity  

As described above, the mathematical logic for attempting to obtain significant P-values 

revolves around generating a body of evidence showing that particular outcomes could not have 

occurred simply by chance. If significant P-values are obtained, this supports the notion that 

subsequent interventions conducted in accordance with the same protocol are very likely to 

obtain the same (or very similar) levels of statistical significance. Unfortunately, it appears that 

researchers who employ multiple dependent variables within the same experiment fail to 

recognize that analyzing concurrent univariate findings inevitably inflates the experimentwise 

Type I error rate (Tatsuoka, 1973). These researchers overlook the critically important point that 

any variable taken in isolation may affect the criterion differently from the way it will act in the 

company of other variables. To reiterate, when one or more of the multiple dependent variables, 

analyzed univariately, is identified as reaching statistical significance, the external validity is 

compromised (Fish, 1988). This may be one of the strongest arguments against conducting 

multiple univariates tests within a single experiment without a strategy that protects the 

familywise error rate. One must ask, “What is the point of claiming statistical significance if 

subsequent investigations that attempt to replicate a researcher’s published protocols are unlikely 

to obtain similar findings of significance?”  
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Alternative Perspectives on Type I Error 

Despite the extensive evidence described above, there remains some disagreement regarding 

the inflation of alpha within and across disciplines, and researchers with differing research 

perspectives have made salient arguments for examining univariate outcomes within the confines 

of a given experiment. For example, Huberty and Morris (1989) offer four circumstances in 

which conducting a series of ANOVAS within a single experiment might be a reasonable/logical 

approach:  

Multiple ANOVAS might be conducted to (a) study the effects of some treatment 

variable or variables on conceptually independent outcome variables; (b) explore new 

treatment-outcome variable bivariate relationships; (c) reexamine bivariate relationships 

within a multivariate context; and (d) select a comparison group in designing a study. (pp. 

303-304) 

It is important to note that Huberty and Morris are not advocating wholesale and 

unconstrained multiple univariate tests within experiments. Indeed, these authors propose a wide 

range of supportive statistical procedures when examining multiple dependent variables within a 

given study. These authors emphasize that concurrent univariate tests measured within a single 

experiment should be accompanied by a report of all the intercorrelations among the variables 

under consideration. Huberty and Morris state, “Typically, these correlations would be reported 

in the form of a matrix” (p. 307). Undoubtedly, providing sets of correlation matrices within 

studies that employ univariate multiple comparisons would allow readers to determine 

subjectively the degrees to which dependent variables may be orthogonal or correlated to one 

another; however, there are more parsimonious and efficient strategies for analyzing such data. 

Hochberg and Tamhane (1987) provide a classic guide to conducting multiple comparison 

techniques while guarding against the inflation of the Type I error rate. One of the most robust 

solutions for precluding inflation of Type I error rate is offered by Leary and Altmaier (1980): 

The solution to the problem of inflated error rates with multivariate studies (those having 

more than one dependent variable) is to analyze the data using multivariate techniques; 

the most common examples are Hotelling's T
2
 and multivariate analysis of variance 

(MANOVA), multivariate analogues of the t test, and ANOVA, respectively. A 

multivariate analysis is, as its name implies, a statistical method that allows the 

simultaneous consideration of more than one dependent variable (Kleinbaum & Kupper, 

1978), as distinguished from the more commonly used univariate analyses (t test, 

ANOVA, chi-square), that can handle only one dependent variable at a time. By 

considering several dependent variables at once, multivariate analyses allow the 

researcher to hold the probability of making one Type I error at alpha. (p. 613)  

Well beyond the details described above, our appendix provides enrichment material in the 

form of a more mathematically rigorous account of multivariate confidence intervals, the 

Bonferroni Theorem, and related variables influencing changes in the experimentwise error rate 

within applied univariate and multivariate statistics.  
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Reviewer Comments and Suggestions 

In the material below, we provide several excerpts from hypothetical/simulated reviews 

focusing on issues that have come into question fairly often in the course of conducting actual 

reviews for several journals, including, but not limited to, Behavior and Social Issues. 

Failing to Find Significant Differences  

In the excerpt below, the simulated submission included a strategy to establish “sameness of 

groups previous to treatment” by demonstrating that the null hypothesis could not be rejected 

when contrasting potentially contaminating variables. This strategy is not entirely unusual; on 

several occasions, researchers have attempted to demonstrate that variables such as age, political 

affiliation, academic performance level, ethnic origin, etc., are not experimental artifacts that 

might influence participants’ behavior by conducting t-tests (or other univariate procedures) and 

then “failing to reject the null hypothesis.” As the reviewer indicates below, failing to reject the 

null hypothesis does not provide evidence that the variables being analyzed are, in any way, 

equivalent to one another. 

Reviewer Comments: In selecting participants for group assignment, it appears that failure 

to find statistically significant differences was employed as a strategy for showing that 

participants are the same with regard to particular physiological characteristics. For example, on 

p. 19 within the Results section, the authors indicate: 

We found no statistically significant differences with regard to physiological attributes 

in terms of body mass index, t(2, 12) = 0.914, p > .05, resting blood pressure, t(2, 12) 

= 0.1968, p > .05, and serum cholesterol in mg/dl, t(2, 12) = 0.06276, p > .05. 

I think it is important to be very clear about what it means to fail to reject the null 

hypothesis. Forgive the annoying use of jargon and double negatives, but this is the foundational 

logic of normal curve theory and null hypothesis testing, and we are obligated to employ it 

properly. Failing to reject the null hypothesis does not in any way suggest that groups 

demonstrate equivalent physical characteristics or performances. Failing to reject the null 

hypothesis only means that one cannot rule out the chance that the differences between groups 

could be a function of sampling error. Thus, I can see no methodological advantage regarding the 

inclusion of any of these details within a revised version of this manuscript. There is, however, 

an alternative statistical strategy that might be employed if the authors of this study are 

committed to demonstrating that groups are essentially the same with regard to potentially 

contaminating variables. “Equivalence testing” is a valuable and increasingly popular statistical 

technique that the researcher uses to determine an interval where the means can be considered as 

being the same or “equivalent.” If the authors are inclined to employ some form of statistical 

analysis demonstrating sameness regarding a particular attribute, I believe they will find this test 

of equivalence approach especially helpful (Chow & Liu, 2000; Wellek, 2002). 

Employing a Series of Univariate t-Tests 

As indicated above, the probability of finding statistically significant differences (between 

or among groups) increases with the number of dependent variables selected for univariate 

testing conducted within a given experiment. In the reviewer’s comments below, the imaginary 
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submission included multiple dependent variables analyzed separately in univariate fashion. In 

the simulated reviewer comments below, the reviewer informs the author/s that employing 

multiple dependent variables and testing the null hypothesis with a series of univariate t-tests are 

very likely to inflate the experimentwise Type I error rate. 

Reviewer Comments: Several statistical anomalies occur within the Results section of the 

current submission, and it appears that the authors have employed multiple concurrent t-tests 

regarding the same participants within the same experiment: 

We conducted a t-test to identify changes in levels of interest of participants who were 

exposed to rules indicating that some facial expressions were more desirable than 

they were during post-test 1 and post-test 2. Findings of the initial t-test established 

that the change in participants’ levels of interest seen during post-test 1 was 

significant only for those who had difficulty maintaining eye contact during 

conversations (M = 42.376, SD = 24.912) and for participants demonstrating no 

difficulties associated with maintaining eye contact during conversations (M = 85.464, 

SD = 16.31), t(2, 14) = 0.022, p < .05. Interestingly, the change in participant interest 

during post-test 2 did not reach significance, t(2, 14) = 0.4611, p > .05.  

As additional univariate statistical tests are employed in a given experimental preparation, 

the likelihood that one or more of the calculated probabilities being identified as significant 

increases dramatically as a function of chance. With each univariate test conducted, the 

differences between groups are more likely to become a function of sampling error. Since the 

authors have run pretests and post-tests on two groups (while measuring changes on several 

dependent variables simultaneously), it seems reasonable to suggest an analysis of covariance 

(ANCOVA) test. If the authors are determined to employ more than one dependent measure, a 

multivariate procedure that analyzes change from pretest to post-test will be most appropriate. 

Moreover, since the authors have employed several dependent variables concurrently, a 

multivariate analysis of covariance (MANCOVA) is the statistical technique of choice. 

Multiple χ
2
 Tests within a Single Experiment 

In the section below, the authors have conducted a series of χ2
 tests with reference to the 

same participants within the same experiment. In this particular study, the obtained χ
2 values are 

unusually large, and several techniques to address the inflation of α are suggested. 

Reviewer Comments: On p. 101, within the Results section, the following statistical outcomes 

are provided:  

A chi-square test was conducted in order to identify potential changes in the target 

behavior directly related to the type of treatment protocol employed. This nonparametric 

statistical test demonstrated that the form of treatment significantly changed the 

participants’ ability to perform accurate sound discriminations, χ
2
 (1, n = 2,133) = 17.88, 

p < .001. An overview of the proportions of correct versus incorrect phoneme 

segmentation and correct versus incorrect word comprehension as a function of the 

protocol type is illustrated in Table 3. The chi-square analysis of the phoneme 

segmentation (correct versus incorrect) changed significantly in accordance with the 

duration of protocol implementation, χ
2
 (2, n = 2,133) = 31.61, p < .001. Likewise, word 

comprehension (correct versus incorrect) changed significantly in accordance with the 

type of protocol employed during treatment, χ
2
 (2, n = 2,133) = 32.5, p < .001.  
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From the above description of procedures and outcomes, it appears that separate χ
2
 analyses 

were conducted with reference to the same participants within the same study. Such a strategy 

results in what often is described as probability pyramiding. Under such experimental 

arrangements, the authors inadvertently have increased the likelihood of obtaining significant 

results where they may not exist (see Stevens, 2009, for a discussion). On the other hand, the 

authors have obtained χ
2 

values that are extremely large (albeit obtained concurrently), and it 

appears very likely that a Bonferroni adjustment might reveal statistical significance among “all” 

the measures. This popularly employed adjustment procedure may well add statistical precision 

to the authors’ findings while maintaining more than adequate levels of significance among all 

the obtained findings.  

From my point of view, the Bonferroni adjustment is the most straightforward correction 

strategy. This procedure obtains new required P-values by allowing the researcher to calculate 

adjusted probabilities and to keep the familywise α value at .05 (or another specified value). I 

will, however, mention that Bonferroni has the propensity to sacrifice statistical power because 

the familywise error calculation is based on the supposition that the null hypothesis is true for all 

comparisons made within a given experiment.  

One could arrive at the required 0.05 alpha level by dividing 0.05 by 5 and obtaining 0.01 as 

the critical value representing a 0.05 for the experimentwise error rate. It is important for the 

author to understand that the “traditional Bonferroni adjustment” assumes all tests are orthogonal 

when calculating the familywise error rate. As something of an overgeneralization, this only 

requires dividing the authors’ current required error rate (0.05) by the number of χ
2
 tests 

employed: 

Adjusted α-level = required α for your study / number of tests for significance. 

In the current submission, the authors have employed three significance tests. Accordingly, 

they can employ the Bonferroni correction by dividing their Type I error rate by the number of 

dependent variables analyzed (0.05/3 = .01666 as the required level of significance for each of 

the three obtained χ
2 

values). I will mention that numerous substitutes for the Bonferroni have 

been developed (see Olejnik, Li, Supattathum, & Huberty, 1997, for a review). Also, Šidák 

(1967) suggests several simple modifications of the Bonferroni formula that will not contribute 

to the likelihood of a Type II error. Many of these procedures are more powerful than the basic 

Bonferroni correction, and they have the advantage of being applicable to most of the commonly 

employed parametric and nonparametric procedures (e.g., t-tests, F-tests, or χ
2
).  

It might be useful for the authors to take into consideration the fact that “modified 

Bonferroni procedures” were developed for more diversified types of investigations than the χ
2
 

test. As mentioned previously, Olejnik et al. (1997) reviewed the modified Bonferroni 

procedures and their computations, and the modified Bonferroni techniques have clear benefits 

beyond the original version of the Bonferroni adjustment. Given the authors’ large obtained χ
2
 

values, it appears that the basic Bonferroni adjustment will reveal statistically significant 

findings among “all” the outcomes in this study. Again, this frequently employed strategy is very 

likely to add statistical precision and sustain more than adequate levels of significance among all 

of the authors’ current findings.  
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Multiple F-Tests 

In the excerpt below, the authors’ paper included findings that were obtained by way of 

conducting a series of multiple F-tests within the same experiment. In some parts of the 

simulated reviewer comments below, particular figures are mentioned; however, since this is a 

hypothetical review, no actual figures are included.  

Reviewer Comments: Running a sequence of post hoc comparisons by way of the Tukey 

method to access various t-values [subsequent to identifying significant P-values for ANOVA] is 

essential. However, when a researcher conducts several univariate tests [in this case, F-tests] 

within “the same experiment,” significant results can be found due to chance at a level that 

exceeds that specified by the experimenter. On p. 8 of the authors’ current submission, the 

following material contains a series of univariate F-tests. These univariate tests were conducted 

in the absence of techniques that would protect the experimentwise error rate: 

A subsequent series of ANOVA tests were employed to analyze marital status as it relates 

to military experience and ability to sleep. A borderline significant main effect was 

obtained regarding marital status on the mean level for REM sleep, F(2,46) = 2.490, p = 

.071. A post hoc Tukey HSD test suggested that the mean for female veterans (M = -0.87, 

SD = 4.21) approached levels of statistical significance as it differed from the mean for 

male veterans (M = -3.76, SD = 2.92, p < .061) while the mean for male and female non-

veterans (M = -3.89, SD = 2.31) was not significantly different from female veterans (p = 

.747) or male veterans (p = .409). Female veterans demonstrated higher levels of REM 

sleep than male veterans. This series of tests indicated no statistically reliable differences 

pertaining to marital status on the mean level of REM sleep, F(2,46) = 0.211, p = .834.  

I understand all too well that employing a series of univariate F-tests “within the same 

experiment” has a certain natural logic and, perhaps, even an intuitive appeal. Plainly, this type 

of analysis has been published very often in the psychological and general behavioral science 

literature; nevertheless, these strategies represent a series of inaccurately calculated statistical 

findings [i.e., inflated levels of significance] when employed in this manner. Indeed, several 

investigations have brought this issue to the attention of the behavioral science community. As 

described by Neher (1967) and forwarded by Schatz, Jay, McComb, and McLaughlin (2005), the 

issue of “probability pyramiding” is not uncommon where multiple ANOVAs are employed 

within the same experimental preparation/study. Schatz et al. state: 

In most cases, researchers treat each statistical test individually, instead of examining the 

results as a whole, demonstrating a lack of control for Type I error. Performing multiple 

ANOVAs or following a MANOVA with univariate ANOVAs without adjusting the 

alpha level accordingly commonly results in Type I error (Dar, Serlin & Omer, 1994). 

The Bonferroni correction, commonly referred to in methodology and statistical texts and 

articles, is a simple-to-use control for inflated Type I error (e.g., Cohen, 1990; Stevens, 

2009). This simple procedure involves decreasing your alpha level to account for the 

number of statistical analyses conducted on that independent variable, and is often 

referred to as a means of reducing “familywise error.” For example, the researcher 

analyzing the effects of an intervention on five separate dependent measures (but using a 

sample size too small to meet the assumptions of a MANOVA) would “correct” the P-

value to .01 to maintain an acceptable likelihood of Type I error. Whereas, five separate 

analyses performed with a .05 alpha level would result in a 25% likelihood of Type I 
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error (5×.05 = .25), “correcting” the alpha level to .01 maintains a “familywise” error rate 

of 5% likelihood of Type I error (5×.01 = .05). (p. 1054) 

In the study currently under review, the use of fragmented univariate F-tests act to inflate 

the overall Type I error rate, and the researchers may have concluded that treatments were 

effective in conditions where chance might well be operating. It is possible that a conventional 

multivariate analysis and post hoc tests (or Bonferroni adjustments) could demonstrate statistical 

significance among several of the dependent measures. Alternatively, multiple comparison 

techniques as described by Hochberg and Tamhane (1987) might be conducted. Any of these 

strategies would go a long way toward precluding the authors’ current complications associated 

with the inflation of alpha.  

Generally speaking, the most commonly employed technique that controls the Type I error 

rate is multivariate analysis of variance. As discussed by Stevens (2009), “…with the use of 

multiple criterion measures, we can obtain a more complete and detailed description of the 

phenomena under investigation…” (p. 2). And, as described by Leary & Altmaier (1980):  

The solution to the problem of inflated error rates with multivariate studies (those having 

more than one dependent variable) is to analyze the data using multivariate techniques; 

the most common examples are Hotelling's T
2
 and multivariate analysis of variance 

(MANOVA), multivariate analogues of the t test, and ANOVA, respectively. (p. 613)  

I should mention that there are other relatively straightforward solutions for remediating the 

current statistical complications. First, the authors might simply employ their existing descriptive 

statistics and graph their results in accordance with the current collection of 

electroencephalograph (EEG) measures in Figures 5 and 6. In doing so, the authors could 

eliminate references to the probability values obtained by way of multiple univariate tests within 

the first and second training procedures. Given that the current version of statistical findings is 

inflated, I believe straightforward “descriptive statistics” and graphical representations of 

findings are the most appropriate remedial strategy. From my perspective, visual inspection of 

the authors’ excellent graphs in conjunction with their descriptive statistics is sufficiently 

compelling. In this particular study, more than in most, the graphs alone address the findings in a 

manner that is more persuasive than any of the presently listed P-values—particularly, when one 

considers that the P-values were obtained by way of conducting multiple univariate procedures 

within the same experiment.  

Neural Networking Alternatives 

Although neural networking systems as applied to the classification and/or prediction of 

behavioral outcomes is beyond the scope of this paper, it is important to know that there are a 

rapidly evolving series of neural network systems aimed at classifying/differentiating groups and 

predicting behavioral findings. This is because in many studies within the behavioral and related 

sciences, the objective may not revolve around identifying the probability of finding differences 

between groups; rather, the researcher/s may be interested in forecasting future outcomes. For 

example, can we predict which graduate students will make the best teaching assistants (e.g., 

Rumph, Ninness, & Lawson, under review)? Are we able to recognize the phonological features 

of speech (Kohonen, Makisara, & Saramaki, 1984)? Are we able to predict the time and location 

of particular financial crises (Erdal & Ekinci, 2013)? Can we accurately forecast students who 
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are at risk for specific types of academic problems (Ninness et al., 2005)? Can we correctly 

predict the voting behaviors of particular legislatures (Ninness et al., 2012)? Many researchers in 

the behavioral and physiological sciences might believe that, to a large extent, we are already 

capable of making amazingly accurate predictions or classifications regarding such measures by 

way of our conventional regression methodologies, and if the data at hand approximate linearity 

and conform to normal curve theory, they would be correct. However, our conventional 

statistical techniques have limitations when a dataset is extremely nonlinear and is not consistent 

with the key assumptions within normal curve theory. 

As discussed by Ninness et al. (2013), in the behavioral and related sciences, where the 

number of multivariate, nonindependent, and nonlinear variables are continually rising, the sheer 

volume of new types of academic measurements is almost overwhelming (James, 1985). The 

exasperating, yet unavoidable, fact is that an increasing part of the data we collect in an effort to 

answer our complex academic questions have become a substantial part of those very questions 

(Gigerenzer, 2004). Artificial neural networks offer a range of modern alternatives to traditional 

univariate and multivariate statistical tests that may be limited by the key assumptions in normal 

curve theory. To the extent that the available data includes some form of functional 

relationship/s, behavioral scientists are likely to find a large number of neural networks that are 

capable of recognizing and predicting patterns even when the data of interest is extremely 

nonlinear and non-normal (Gonzales & DesJardins, 2002; Rumph, Ninness & Lawson, under 

review). On the other hand, when the available data “do” conform to the assumptions of normal 

curve theory, classical statistical techniques are very likely to perform as well (and much faster) 

than neural network systems aimed at performing the same types of operations (see Navarro & 

Bennun, 2014, for a related discussion).  

Discussion 

As described above, when we have data that conform to normal curve theory and the data at 

hand are consistent with the underlying assumptions pertaining to the analyses, conventional 

statistics provide a wealth of supplemental information that does not exist in most of the 

currently available neural network technology. For example, predictions generated by neural 

networks are not accompanied by known margins of error. That is, when a network algorithm 

forecasts a score or a series of scores, behaviors, or classifications, these predictions are not 

supplemented by values indicating a bandwidth of accuracy within which subsequent results will 

fall with a known margin of error. This does not mean that neural network predictions cannot use 

cross-validation procedures or perform follow-up operations that verify the accuracy of a given 

set of predictions. It does mean that there are a number of clear advantages to making decisions 

and predictions by way of traditional statistical methodology when it is possible to do so. For 

example, when employing classical statistics and rejecting the null hypothesis, the researcher can 

access confidence intervals within which true mean differences or effect sizes fall within a 

known margin of error. When making predictions regarding a person’s performance on a 

particular test, the researcher has access to the intervals within which future performances are 

likely to fall. When making predictions with classical statistics, the researcher can see the extent 

to which each independent variable is weighted and contributes to the prediction of future 

outcomes. Such details are simply not available when conducting an analysis with most of the 

currently available neural network systems (Sharma, Rai, & Dev, 2012).  
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There are, however, several caveats with regard to employing classical statistics and 

obtaining all of the valuable heuristic details that accompany these traditional procedures, even 

when the available dataset represents an excellent approximation of a normal distribution. None 

of the standardized error values, confidence intervals, or P-values serves any real purpose if the 

procedures used to test the null hypotheses have inflated the Type I error. As described above, 

when one or more dependent variables within the same study are analyzed univariately the 

external validity is compromised and the Type I error rate becomes inflated. And, despite any 

impressive appearing P-values that may accompany such forecasts and despite any apparently 

impressive confidence intervals, and/or coefficients of determination, etc., none of the obtained 

statistical calculations are what they appear if the Type I error has been inflated as a result of 

probability pyramiding. 

Effect Size 

In a general sense, effect size can be described as the magnitude of change that occurs in one 

or more dependent variables that is a function of the independent variable/s. Even if a familywise 

Type I error is appropriately accounted for, there is still the potential issue of whether or not a 

statistically significant effect is of any practical significance in the context of the problem of 

interest. Consequently, any significant test result, regardless of how small its associated P-value 

might be, should be critically assessed for its practical relevance. Simple evaluation of the 

estimated magnitude of the effect itself may suffice, or evaluation of the estimated confidence 

limits for the effect may be more relevant in some contexts. 

Clearly, the risk of finding statistically significant results that are so small in magnitude as to 

not be considered of any practical value is highest in the presence of very large samples. So 

while P-values help determine the presence (or not) of an effect of interest, they fail to address 

the hanging question of: If an effect is present, how large is it? This is the role of estimation and 

is why virtually every finding of a statistically significant effect should lead to a subsequent 

estimation of the size of the effect, and preferably, a confidence interval estimate of the effect 

reflecting the remaining level of uncertainty involved in the associated experiment. And, of 

course, consistent with the argument throughout this article, the size of these intervals will 

depend on how many such intervals are to be constructed in order to preserve the experiment-

wide confidence level for all the intervals presented (see enrichment material that follows for 

some further details). 
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Appendix: Enrichment Material 

Confidence Intervals 

Due to the inherent uncertainty in drawing conclusions about populations using data 

acquired from samples of those populations, it often is desirable to attempt to quantify the 

uncertainty involved by providing confidence interval estimates of the variable parameters or 

treatment effects of interest. For commonly considered location parameters, the basic form of a 

confidence interval is outlined in Figure 1. The most common form of a 100(1-α) percent 

confidence interval for a population mean μ is that obtained from inverting a common t-test, and 

is given as:  

X̅ – t(n-1,1-α/2)S/√n to X̅ + t(n-1,1-α/2)S/√n , 
 

where t(n-1,1-α/2) is the 100(1-𝛼
2
)
th

 percentile of a student’s t-distribution with n-1 degrees of 

freedom, and X̅ and S are the sample mean and sample standard deviation, respectively. The 

form of this interval is entirely consistent with the diagram in Figure 1. It simply is comprised of 

the best point estimate of the parameter of interest plus and minus a suitable multiplier times an 

estimate of the standard deviation of that best point estimate.  

Multivariate Confidence Intervals  

In most experiments and/or research, there is more than a single parameter or treatment 

effect to be evaluated. Certainly, each parameter or effect of interest can be evaluated separately 

using univariate statistical procedures similar or related to those discussed above. However, the 

experimenter/researcher should be aware of the potential for propagation of error when adopting 

a univariate approach.  
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Figure 1. Basic structure of a confidence interval for a location parameter 

 

As a basic example, consider a set of two test scores (perhaps, separate verbal and 

quantitative test scores) for a sample of n subjects representative of a population of interest 

(perhaps, for subjects from a geographic region or subjects receiving some kind of specialized 

advanced test preparation). Further, suppose the experimenter/researcher is interested in the 

mean test scores for the population from which this sample was obtained (i.e., μV & μQ). 

Separate univariate confidence intervals can be obtained for both of these population parameters 

using the approach described above. With an α = 0.10, n = 25, X̅V = 420, SV = 90, X̅Q= 380, and 

SQ= 125, the resultant 90% confidence intervals are given as seen in Figure 2. 

While each of the intervals above has only a 10% chance of not including its respective 

population parameters, it is important to understand that the chance that both intervals are in 

error is at least 10%, and that this chance could be as large as twice the potential rate for each 

individual interval, which in this case would be 20%. 

Bonferroni Theorem 

Exactly how large the experiment-wide error rate is will not be known, but it can be 

bounded. The Bonferroni Theorem ensures that for multiple intervals all having the same 

individual error rate α, the experiment-wide error rate will be no larger than the minimum of one 

and the sum of the individual error rates (i.e., mα, where m is the number of intervals being 

produced). Consequently, if it were desired that the overall, experiment-wide error rate for the 

intervals in this example was to be no larger than 10%, then two individual 95% confidence 

intervals could be constructed. Such intervals are relatively easy to construct as they only require 

a change to the multiplier used in their calculation. 

 

 

Confidence Interval for a Population Location Parameter θ:

Best Point Estimate ±
Multiplier based on

1) the relevant distribution
2) the confidence coefficient

x

Standard Deviation of 
the Best Point Estimate
(or an Estimate of this
Standard Deviation)

± M(f( ),α) x (or )

where = Sample Estimate of Population Parameter θ,

f( ) = Probability Density Function for the Sampling Distribution of ,
100(1-α)% = Confidence Coefficient for the Interval,

= Standard Deviation of the Sampling Distribution of , and
= Sample Estimate of Population Parameter .
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Figure 2. Univariate student’s t percent confidence intervals 

 

For the example considered here, the original multiplier used was t(n-1,1-α/2) = t(24,0.95) = 
1.711; however, this could produce an experiment-wide error rate as large as 20%. To preserve 

an experiment-wide error rate of no more than 10%, a multiplier of t(n-1,1-α/[2m]) = t(24,0.975) = 

2.064 (note here, m = 2 intervals are being considered) could have been used for each individual 

interval. While these intervals will be over 20% (i.e., 
2.064

1.711
− 1 ≈ 20.63%) wider than the 

original intervals, they ensure that the experiment-wide error rate is no more than 10%, while for 

the original intervals the experiment-wide error rate was almost certainly larger than 10%.  
Just as it is necessary to pay a penalty for not knowing the true population standard 

deviation in construction of a univariate confidence interval (i.e., having to use a t-distribution 

percentile as the multiplier that will always be larger than its corresponding normal distribution 

percentile), it also is necessary to pay a penalty to manage the propagation of error that occurs 

when constructing multiple intervals (or making multiple inferences). In both cases, the 

“penalty” comes in the form of wider confidence intervals that are produced through use of 

larger and more appropriate multipliers of the standard error, or more accurately, an estimate of 

the standard error. 

The Bonferroni Theorem is based on a probability argument and simply provides an upper 

bound for the overall error rate. The actual error rate could be, and most likely is, less than the 

Bonferroni bound. While the Bonferroni approach recognizes that the considered variables might 

be correlated and impact the respective experiment-wide error rate, it makes no attempt to 

directly account for (or estimate) the relevant correlation(s). 

A well-known multivariate statistic, Hotelling’s T
2
, does make an attempt to directly account 

for any correlation that might be present among the variables being considered by an 

experimenter/researcher. Hotelling’s T
2
 is generally defined as: 

Interval for μV:

± t(n-1,1–α/2) /

420 ± t(24,0.95)90/

420 ± 1.711(18)  ≈

420 ± 30.8

389.2   to  450.8

Interval for μQ:

± t(n-1,1–α/2) /

380 ± t(24,0.95)125/

380 ± 1.711(25)  ≈

380 ± 42.8

337.2   to  422.8
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T
2
 = n(�̅� – μ)

T
S

-1
(�̅� – μ), 

 

where �̅� = 1
n
 ∑ 𝐱i

n
i=1 , with 𝐱𝑖 an mx1 vector of results for the i

th
 sample unit/subject, 

μ = an mx1 vector of the m variable population mean values, 

S = 
1

n−1
 ∑ (𝐱i − �̅�)(𝐱i − 𝐱)Tn

i=1  an mxm sample variance-covariance matrix, 

v
T
 = a 1xm transpose of the mx1vector v, and 

A
-1

 = an mxm inverse of the mxm matrix A. 

When the random vectors xi originate from an m-dimensional multivariate normal 

distribution, 
𝑛−𝑚

𝑚(𝑛−1)
T

2
 follows an F-distribution with m and n-m degrees of freedom, allowing for 

construction of m-dimensional confidence ellipsoids. Such an m-dimensional ellipsoid is actually 

an m-dimensional region having the specified confidence of including the m-dimensional 

population mean vector μ. This is a region that has the specified confidence of containing all the 

μj values for the j = 1 to m parameters/effects of interest. When m = 1, this confidence region 

reduces to the confidence interval previously discussed. 

For the example considered here, assume the sample correlation between an individual’s 

Verbal and Quantitative test scores is 0.8, then the relevant covariance is 0.8 times the product of 

the two variable standard deviations (i.e., Sv*SQ = 90*125 = 11250), or SVQ = 9000. From the T
2
 

statistic noted above, the 2-dimensional 90% confidence ellipsoid for the population parameters 

vector μ
T
 = [μV, μQ] is as appears in Figure 3. 

While this confidence ellipsoid can be displayed when there are only two parameters/effects 

being evaluated, and perhaps, a three-dimensional ellipsoid could be displayed, if more than 

three parameters/effects are being considered, then display of the resultant ellipsoid is not 

possible. In addition, it is often desirable to be able to present confidence intervals that are not 

dependent on the unknown values of the other parameters/effects. These can be obtained from 

the approach described here and are of the same basic form as all the intervals described above 

and as displayed in Figure 1. 

The best point estimates are still the relevant sample averages, and the estimates of their 

standard deviations are the same. The only difference is again found in the multiplier used to 

obtain the intervals for the individual parameters. While the univariate and Bonferroni interval 

multipliers were appropriate percentiles of student’s t-distribution with n-1 degrees of freedom, 

the multipliers based on the T
2
 statistic are given as: 

MT2 =√
m(n−1)

n−m
F(m,n−m,1−α) 

where m = number of parameters/effects being considered, 

n = number of multivariate observations (i.e., the sample size), and 

F(df1,df2,p) = p
th

 percentile of an F-distribution with df1 & df2 degrees of freedom. 



PROBABILITY PYRAMIDING REVISITED 

 

183 

 

 

Figure 3. Ninety percent confidence ellipsoid for mean verbal and quantitative test scores 

 

For the example considered here, m = 2, n = 25, 1-α = 0.90, and F(2,23,0.9) ≈ 2.5493, 

giving MT2 ≈ 2.307. Note that this multiplier produces an interval wider than both the Bonferroni 

and the univariate intervals, where the multipliers are 2.064 and 1.711, respectively. As with the 

Bonferroni intervals, these T
2
 intervals also provide an error rate of no more than α that all the 

intervals include their respective parameters/effects. However, since they are wider than the 

Bonferroni intervals, the latter are often preferred by most analysts. 

All the intervals appear in Figure 4, where the relationship between them can be readily 

observed. It should be noted that the T
2
 intervals are the same width as projections, or shadows 

of the ellipsoid on the respective axes. In comparison to the exact ellipsoidal interval, the T
2
 

(multivariate) intervals are clearly conservative. The Bonferroni intervals are not as obviously 

conservative from the display but are known to be by probability theory. Probability theory also 

ensures the univariate intervals are liberal (i.e., have less than the stated 90% coverage for both 

parameters/effects, simultaneously). 
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Figure 4. Comparison of univariate, Bonferroni, multivariate, and ellipsoidal intervals 

 

A reasonable question at this point might be why the T
2
 statistic is of any value at all if the 

confidence intervals it provides are always wider than the corresponding Bonferroni intervals. 

The value of the T
2
 statistic is in conducting inference through hypothesis testing.  

Note that if the experimenter/researcher involved in the example being considered here were 

interested in testing whether or not the mean test scores across the test types were equal or not 

(i.e., H0: μV = μQ), then being willing to consider a Type I error rate of α = 0.10, the researcher 

would reject this hypothesis using the T
2
 statistic. However, considering only univariate 

approaches at the same error rate would fail to reject the hypothesis of equal mean test score 

values for the population of interest. 

This can be observed in Figure 5, where the line μV = μQ has been superimposed on Figure 

4. The line lies entirely above the confidence ellipsoid; however, it passes through all the 

rectangles.  
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Figure 5. Evaluation of hypothesis of equal test score population means 

 

This type of situation, where the multivariate test statistic indicates that the population 

parameters/effects are not equal, but all associated confidence intervals suggest that they may 

indeed be equal, can be encountered whenever more than a single parameter/effect is being 

evaluated. It is more likely to occur when the variables involved are highly correlated than when 

they are not. However, when variables are highly correlated, they essentially carry much of the 

same information, and perhaps, the measurement of both is unnecessary.  

Reducing the dimensionality (e.g., reducing the number of variables under consideration or 

combining them in some manner) of an experiment is almost always desirable as it avoids some 

of the issues, complications, and complexities of effectively analyzing multivariate data. 

Certainly, removing essentially redundant measurements from consideration is one means to 

reduce dimensionality. This can be an attractive alternative in situations where one of the 

correlated variables is very costly to obtain compared to the other. However, in situations where 

removal is not a viable option, there are other approaches to reducing the dimensionality of the 

data to a more manageable and inherently understandable low (i.e., 2 to 3) dimensional space. 
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Discussion of such alternatives is really beyond the scope of this dialogue (see Johnson & 

Wichern, 2007; Anderson, 2003). 

Conclusion 

When an experimenter/researcher is considering more than one parameter/effect, using 

purely univariate approaches to separately evaluate each one is rarely the appropriate analysis 

approach. It frequently leads to misstatements relative to overall, experiment-wide error rates, as 

error is propagated across perhaps many univariate tests/intervals. 

When considering confidence intervals for parameters/effects, simple adjustments to the 

commonly applied univariate intervals can be made to ensure low (i.e., stated) experiment-wide 

error rates. These adjustments take the form of slightly larger multipliers being used in the 

common construction of such intervals. However, all such intervals are still conservative and 

may not entirely align with their associated hypothesis test results. In such cases, the exact 

multivariate confidence ellipsoids become the only appropriate intervals. Producing displays of 

these is greatly facilitated if the dimensionality of the problem can be reduced to a more readily 

manageable level. 

 


