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Fifteen participants unfamiliar with mathematical operations 
relative to reflections and vertical and horizontal shifts were exposed 
to an introductory lecture regarding the fundamentals of the 
rectangular coordinate system and the relationship between 
formulas and their graphed analogues. The lecture was followed 
immediately by computer-assisted instructions and matching-to­
sample procedures in which participants were e)(posed to computer­
posted rules regarding the relationship between particular types of 
formulas and their respective graphs. After participants 
demonstrated mutual entailment on formula-to-graph and graph-to­
formula functions, they were assessed for 36 novel relations on 
complex variations of the original training formulas and graphs. In 
Experiment 1, 5 of 15 participants demonstrated perfect or near 
perfect performance on all novel relationships. Experiment 2 was 
directed at the remaining 10 participants who failed to correctly 
identify all mathematical relationships assessed in Experiment 1 . The 
error patterns for these 10 participants were classified with the help 
of an artificial neural network self-organizing map (SOM). Training in 
Experiment 2 was directed exclusively at the types of errors identified 
by the SOM. Following remedial training , all participants 
demonstrated a substantial reduction in errors compared to their 
performance in Experiment 1. Derived transfer of stimulus control 
using mathematical relations is discussed. 

Many everyday occurrences entail two or more elements that are 
associated by some rule of correspondence. The mathematical term for 
such a correspondence is a relation. Within the stimulus equivalence 

Portions of this paper were presented at the 29th Annual Convention of the Association 
for Behavior Analysis, San Francisco, May 2003. We thank Dermot Barnes-Holmes and two 
excellent reviewers for their detailed and constructive comments on this manuscript. 
Correspondence concerning this article should be addressed to Chris Ninness, School & 
Behavioral Psychology Program, Department of Human Services, PO Box 13019 SFA 
Station, Stephen F. Austin State University, Nacogdoches, TX 75962. (E-mail: 
cninness@titan.sfasu .edu). 



136 NINNESS ET AL. 

literature, one of the few applied studies to address learning 
mathematical relations confined its analysis to fractions and their decimal 
equivalents. Lynch and Cuvo (1995) developed a protocol that provided 
low performing fifth- and sixth-grade students with an opportunity to 
match fraction ratios (A) to their graph/pictorial illustrations (B) . 
Subsequently, students were trained to match the pictorials (B) to their 
corresponding decimal values (C). Following the emergence of 
equivalence, participants were tested for generalization on other 
(untrained) fraction-to-decimal relationships. Although this study proved 
most encouraging, the approach has not been employed with more 
advanced mathematical concepts. Important to note is that although the 
experimental preparation employed a computer voice synthesizer to 
provide opening instruction to participants regarding response 
contingencies, neither the experimenter nor the voice synthesizer 
provided participants with any rules regarding the trained mathematical 
relationships. During training, selection of the correct comparisons simply 
resulted in a computer-generated verbalization of the word "yes. " In 
discussing their findings, Lynch and Cuvo (1995) note that modification of 
their strategies might be needed and that teaching students to learn 
broad-spectrum rules during training might have enhanced the 
generalized math performance of their participants. 

Lynch and Cuvo's (1995) protocol is consistent with the "traditional" 
experimental arrangements in equivalence and relational frame 
preparations (ct. Leader & Barnes-Holmes, 2001). To date, most stimulus 
equivalence and Relational Frame Theory (RFT) studies have required 
participants to perform a series of conditional discriminations during 
matching-to-sample (MTS) training. These include multiple stimulus 
relations such as greater than, less than, different from, opposite from, 
and equal to some arbitrary stimulus. Experimental preparations often 
involve a series of preliminary training trials with a nonarbitrary stimulus 
array to produce the contextual cues for establishing these relations (e.g., 
Smeets, Barnes-Holmes, Akpinar, & Barnes-Holmes, 2003; Steele & 
Hayes, 1991). Similar approaches have explored a wide variety of 
multiple stimulus relations. In describing a study of contextually controlled 
equivalence classes by Wulfert and Hayes (1988), Barnes-Holmes, 
Hayes, Dymond, and O'Hora (2001) suggest that "combining the different 
relational and functional contexts, one hundred and twenty untrained 
sequences among all of the stimuli emerged from only eight trained 
sequences for all subjects" (p. 64). 

Nevertheless, researchers in the area of RFT as well as stimulus 
equivalence have been reluctant to invoke rule-governance to account for 
the establishment of multiple stimulus relations (Hayes, Barnes-Holmes, 
& Roche, 2003). In computerized versions of such experiments (e.g., 
Stewart, Barnes-Holmes, Roche, & Smeets, 2002), the sample stimuli 
may appear on one segment of the screen, and following a delay, 
comparison stimuli are displayed in various locations and configurations. 
Participants may select a comparison by clicking a mouse over a 
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comparison stimulus and obtain accuracy feedback in the form of "Right" 
or "Wrong" posted on the screen. This is a particularly robust and reliable 
preparation for basic research in equivalence relations; however, as a 
strategy for teaching complex verbal relations, it is not very efficient. Of 
course, this type of experimental arrangement was never intended to 
function within a direct instruction protocol. 

As a practical matter, it is virtually inconceivable that mathematics 
instructors (or designers of computer-assisted mathematics software) 
would be willing to have their students/software users attempt to learn 
complex mathematical relations without first providing them with some 
very precise rules for the relevant problem-solving behavior (Ninness, 
McCuller, & Ozenne, 2000). This does not preclude the adaptation of RFT 
procedures to applied instructional settings. It does, however, suggest a 
need for modification of the traditional computer-interactive platforms in 
building human computer-interactive applications that incorporate 
strategies based on RFT. In fact, many researchers have expressed the 
need for the alternative methodologies that include rules that apply to 
Relational Evaluation Procedures (REP) in order to generate more 
complex relational performances that are not possible using traditional 
MTS formats (D. Barnes-Holmes, personal communication, April 30, 
2003). Moreover, REP would appear congenial with computer-assisted 
tutorial strategies aimed at training the relationships among relationships 
for many topics in applied and theoretical mathematics. 

In our present development of computer-interactive math modules, we 
addressed the area of transformation of graphs of functions. Many 
mathematical functions have graphs that are related to one another in 
terms of their various types of vertical and horizontal shifts and 
transformations. For example, for a vertical transformation, the addition of 
a positive constant after a set of parentheses produces a shift upward 
(positive) , while the subtraction of a constant causes a shift downward 
(negative). In the case of a horizontal transformation, the addition of a 
positive constant inside of a set of parentheses generates a shift to the left 
(negative) , and the subtraction of a constant inside a set of parentheses 
produces a shift to the right (positive). Thus, horizontal transformations are 
somewhat "counterintuitive," and many students find it difficult to identify 
graphed representations of such transformations when they are arranged 
in multiple combinations of simultaneous horizontal and vertical shifts within 
a given formula. Nevertheless, understanding the mutually entailed 
relationships among sets of functions may allow students to derive more 
complex combinations of relations for a wide range of formulas and 
graphed analogues. New REP strategies may have practical applications 
for teaching such complex verbal relations. 

As described by Barnes-Holmes et al. (2001), REP provides subjects 
with an opportunity to identify completely novel sets of stimulus relations 
that were not included in the training protocol. Unlike the bidirectional 
assessment of symmetry, REP strategies allow subjects to identify 
nonsymmetrical but related stimulus functions . Barnes et al. point out 
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that, in experimental arrangements, words such as If and Then can 
influence the derived relations among words in a given sentence. The 
following is used as a naturalistic example of nonsymmetrical verbal 
relations: "If it rains, then take the car" (p. 70). They note that taking the 
car cannot cause the rain; however, raining will influence the likelihood of 
the car being taken. In an experimental arrangement, a given formula 
may generate a unique graph ; however, the same graph may be 
described by an almost infinite array of formulas. Here the mathematical 
relationships that are reported on by subjects (formula-to-graph) are not 
specifically symmetrical. Showing subjects novel formulas allows them to 
identify a vast network of relationships that are extensions of the 
exemplars provided during training and pretraining. 

In RFT, the expression mutual entailment denotes the essential 
bidirectionality of such relational responding, even when the 
correspondence is not specifically symmetrical. For example, if a 
particular mathematical value x is greater than y , then y is less than x. If 
x values vary inversely with y values, then y values vary inversely with x 
values and so on. As stated by Hayes, Fox, et al. (2001) , mutual 
entailment "serves as a more generic term for what is called 'symmetry' 
in stimulus equivalence. Mutual entailment is a defining characteristic of 
arbitrarily applicable relational responding" (p. 29). 

If we train mathematically na'ive participants (pretested to rule out 
understanding of such concepts) to recognize particular features of math 
symbols and functions, we might demonstrate that they are able to 
develop a repertoire of relational responding that applies to similarly 
constructed formulas and graphed representations of these formulas. 
Moreover, the student who learns this relation as it pertains to one set of 
functions and who is told that many other functions operate in much the 
same manner may be able to apply the entailed relations to a much wider 
set of previously untrained functions. 

Although the following study deals with learning the transformation of 
mathematical functions, it does not directly address transformation of 
functions as defined within RFT. Transformation of functions (from an 
arbitrarily applicable relational responding point-of-view) must show 
derived transfer of stimulus controls through equivalence relations using 
discriminative functions. As pointed out by Hayes, Barnes-Holmes, & 
Roche (2001), to demonstrate transformation of function, the stimulus 
functions themselves must be shown to be under contextual control. In 
accordance with these definitions, we will refer to the behavioral effects 
we address as relating mathematical relationships that are mutually 
entailed with in frames of coordination (see Hayes, Barnes-Holmes, et aI. , 
2001 , for a complete discussion) where new learning includes a 
sequence of responses from an appendable network of related concepts 
in basic or advanced mathematics. 

The following study focuses on the learned relationships that emerge 
following rather brief mathematical instructions in conjunction with MTS 
training. Specifically, the study addresses the complex behaviors that can 
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come under the control of the mutually entailed features of mathematical 
formulas and their graphed analogues (Ninness et aI., 2003). These 
relationships go beyond the formal properties of the particular relata 
employed during training, and they may be important because they provide 
basic repertoires from which more complex concepts are generated. 

Experiment 1 

Method 
Participants and setting. Fifteen partiCipants (7 male and 8 female) 

ranging from 18 to 35 years of age were recruited among university 
students as well as employees from a local hospital rehabilitation facility. 
Following informed consent and a pretest to determine level of familiarity 
with algebraic functions, individuals who demonstrated any familiarity 
with mathematical reflections or shifts were excluded from the study. 
Student participants earned 3 extra points on their first class examination 
plus $3.00 for taking part in the study. Because the hospital employees 
were not enrolled at the university, their reinforcement options were 
limited to financial reimbursement ($3.00) for their partiCipation. The 
experimental sessions were conducted in unoccupied classrooms on the 
university campus or offices in the rehabilitation facility. The classroom 
and office environments were arranged to preclude interruptions, and 
they remained free of noise or other types of distractions. 

Apparatus and software. The algebraic instructional and assessment 
software, written by Chris Ninness, was in Microsoft Visual Basic 6 for 
IBM PC compatible machines. Additionally, he developed a modified 
version of the self-organizing map (SOM) algorithm in C++ to classify 
user error patterns during experimental sessions, based on Kohonen's 
logic for the SOM algorithms (see Kohonen, 2001, for a general 
discussion of this architecture). 

These two programs were integrated to provide a platform upon 
which all experimental arrangements were conducted and upon which all 
error patterns were classified . The experimental procedures were carried 
out on a Hewlett-Packard Pavilion ze5170 (Pentium [4]2 GHz processor 
with 512 MB RAM) with an attached infrared mouse (or similarly 
configured IBM compatible laptop or desktop machine). The software 
provided math instructional tutorials and displayed graphs, and it also 
assessed and recorded the speed and accuracy of user performance 
during all phases of the study. 

Design and procedure. The study was designed to simulate 
supplemental web-based tutorials for classroom mathematics instruction. 
Following informed consent, partiCipants who demonstrated absolutely no 
familiarity with algebraic and trigonometric operations relative to vertical and 
horizontal shifts were asked to continue with the experiment. They received 
a brief (approximately 10 min) presentation, read aloud from note cards. The 
lecture included projections of formulas and graphs on an overhead screen 
above the lectern. All participants were exposed to the same introductory 
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lecture and visual presentation regarding the relationship between particular 
formulas and their respective graph functions. 

The lecture was immediately followed by didactic computer-assisted 
instruction. During this initial training sequence, participants did not 
choose correct comparisons. Per our attempt to parallel traditional 
classroom instruction supplemented by computer-assisted instruction, 
participants received computer-posted rules regarding the relationship 
between particular formulas and their graphs. Figure 1 illustrates one of 
the training screens addressing the relationship between formulas and 
graphs of these functions. 
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Figure 1. First training screen showing the reflection in the yaxis and vertical shift when a 
negative sign is placed inside the radical and a constant is added outside of the radical. The 
square function has a vertical shift up the x axis when a constant is added outside of the 
parentheses. 

On this training screen, participants were shown that the basic 
square root and square function are transformed when negative inputs 
and positive constants are provided. This was demonstrated graphically 
using solid (and blue on computer screen) lines to represent the basic 
square root and square function relative to dashed red lines to show 
various transformations of these mathematical functions. 

Each training screen was supplemented by audio output from the 
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computer that provided the same information as visually posted at the top 
of each screen. Thus, for each instructional screen, participants heard and 
read rules regarding vertical and horizontal shifts as they applied to the 
transformation of square and square root functions. To make these rules 
more salient and "memorable," participants read the rules aloud into a 
computer-housed microphone immediately after hearing them from the 
computer; however, the computer microphone served no actual purpose in 
this experiment beyond acting as a prop (perhaps prompt) for participants to 
overtly vocalize the rules displayed on the screen before them. 

On the second instructional screen (Figure 2), participants could see 
(and hear) that, relative to the solid blue line, the basic square root and 
square function reflected down in the x axis when negative signs were 
positioned in front of the radical or parentheses. (Note: On several 
screens, we intentionally exaggerated the use of parentheses to 
emphasize precedence of particular operations.) 

In the last training screen, shown in Figure 3, the square root and 
square function were shown to reflect in the x axis when negative signs 

Negative .sign outside of the radical or the parentheses 
is reflected down ill tbe x-axIs. 

&juare Root Function 
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Figure 2. Second training screen showing changes in the square function when a negative 
sign is placed in front of the radical or parentheses. 
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preceded the primary functions and positive constants were added inside 
the function. It also showed that, relative to the solid blue line, adding a 
constant value inside the radical or the parentheses caused a horizontal 
shift c units in the opposite direction. 

Negative sign outside of the radical or the parentheses 
is reflected down in the I-alis. 

Positive constant (2) inside of the radical or the parentheses causes a 
horizontal shift 2 units in the opposite direction. 

Square Root Function 

y= -Jx+ 2 

Square Function 

2 

y= (X) 

Figure 3. Third training screen showing the effect of a negative sign preceding the radical 
or parentheses in conjunction with a constant added inside of either function . 

Participants were then tested for mutual entailment on formula-to­
graph and graph-to-formula functions. If a particular relationship was not 
identified correctly during these tests for mutual entailment, the software 
took participants back to the initial training modules and retrained them 
on all of the original relationships . Subsequently, it provided the 
participants another opportunity to demonstrate formula-to-g raph mutual 
entailment on the three square root functions that included a negative 
sign inside the radical , a negative sign before the radical, and a negative 
sign before the radical with a positive constant (2) inside the radical as 
shown below: 
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(Tests for mutual entailment were conducted only on the square root 
functions that were employed during the above training screens.) 

Figure 4 shows one example of a test for mutual entailment. Participants 
were exposed to conditional discrimination MTS tests for mutual entailment 
regarding the three previously instructed square root relations. 

Figure 4. One of the tests for the property of mutual entailment following instructions 
regarding how graphs change according to formula details . 

The tests for mutual entailment required that participants match 
formulas to graphs for all three of the above square root formulas on two 
consecutive trials. For example, correctly selecting [OJ in the above screen 
moved participants to a test for mutual entailment, as shown in Figure 5, 
where [EJ is the correct answer. 

After partiCipants demonstrated mutual entailment on two consecutive 
trials that included all three functions, they were assessed for 36 MTS novel 
relations on similarly constructed formulas and graphed analogues. 
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Figure 5. Test for mutual entailment following instructions regarding how graphs change 
according to formula details. 

Accuracy feedback was not provided during any of these tests for novel 
relations. These 36 algebraic and trigonometric functions were variations of 
the originally instructed relationships described earlier. That is, novel test 
items required participants to identify a wide range of mathematical relations 
from an array of graphs that were not trained during any of the previous 
instructional arrangements. Moreover, these test items entailed identifying 
complex combinations of multiple constants with multiple combinations of 
positive and negative valences in the prefix and postfix operations. 

Test items assessed participants' ability to identify graphed reflections 
and vertical and horizontal shifts for cubic, square, logarithmic, exponential, 
and sine formulas. Figures 6 and 7 show 2 of the 36 test screens that 
assessed novel relations. We hypothesized that learning the relations among 
mathematical relations (in this case formulas and graphs) for vertical and 
horizontal shifts together with those that describe reflections in the x axis and 
yaxis might allow participants to identify new combinations of graphs. 

In the Figure 6 example, participants who had successfully acquired 
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Figure 6. One of 36 screens that tested novel relations following computer-interactive 
instructions and MTS training. 

the rules for negative prefix, positive constants within parentheses, and 
positive constants outside of parentheses might correctly select [EJ as the 
combined effect when viewed as a graphed illustration of this function . In 
Figure 7, participants who had successfully acquired the rules for 
negative prefix and negative constants outside of parentheses might 
correctly select [AJ as the combined effect of these variables and 
constants on a graphed illustration of this function. 

The center of Figure 8 shows the four types of mathematical functions 
(four boxes within the center oval) described during training and those 
formulas (on the periphery) used as stimuli to test emergent relations as 
illustrated in Figures 6 and 7. (Note: A negative sign inside the parentheses 
of the square function reflects down in the same way as a negative sign 
outside of the parentheses. Thus, as indicated in the center of Figure 8, only 
the square root version of this formula was provided in training.) 
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Figure 7. One of 36 screens that tested novel relations following computer-interactive 
instructions and MTS training. 

Results 
Of the 15 participants, 5 demonstrated perfect (or near perfect) 

performance on all of the above relationships between the formulas on 
the periphery and their respective graphic illustrations (3 of these 5 
participants missed one item). Five other participants scored at or above 
83% accuracy, and 2 scored above 60%. Only 3 participants scored 
below 60% during Experiment 1. Figure 9 shows the scatter of accurately 
derived relationships (blocks containing the digit 1) relative to errors 
(shaded blocks containing 0) prior to pattern analysis with the artificial 
neural network SOM (Kohonen, 2001). 

There have been over 4,000 published variations and extensions of 
the original SOM (Kohonen, 2001), and it has proven to be especially 
useful in identification of hidden pattern formations, or data-clustering, 
within chaotic systems. Figure 9 illustrates that the pattern in which these 
errors occurred was not immediately discernable. 
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Figure 8. The center of this figure shows the four types of mathematical functions (four 
boxes within the center oval) described during training and those formu las (on the 
periphery) used as stimuli to test novel relations. 

An adaptation of the 80M algorithm was developed by Chris Ninness 
as a diagnostic instrument for classifying error patterns that appeared 
during the first experiment. We employed the 80M to classify the error 
patterns across the 36 test items and 15 participants. Figure 10 shows 
the same data, but classified by error patterns with the 80M. 

Error Pattern Before SOM Analysis 

Novel Mathematical Relations 

Figure 9. Scatter of correct and incorrect responses prior to neural network classification . 
Problem numbers are listed along the x axis for each of the 15 participants. Accurate 
responses contain the digit 1; errors are shaded blocks containing O. 
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Error Pattern After SOM Analysis 

Novel Mathematical Relations 

Figure 10. Classification of correct and incorrect responses following neural network 
classification . As in Figure 9 above, problem numbers are listed along the x axis for each of 
the 15 participants. Accurate responses contain the digit 1; errors are shaded blocks 
containing O. 

Experiment 2 

Consistent with simulating a natural context, in which students 
receive primary instruction in the classroom and obtain supplemental 
material online, Experiment 2 was designed to remediate the errors that 
occurred among participants during Experiment 1. Classification of error 
patterns allowed us to identify difficult items across participants for 
various types of mathematical relationships. Several of the formulas for 
which these participants failed to derive graphed representations during 
Experiment 1 are shown below. 

Y= - "-(x + 4) Y= -Iog(x+ 4) + 4 y, = log(-(x+ 4)) + 4 Y= -sin(x) - 6 

Although these formulas obviously represent very different 
mathematical functions, they show common behavioral functions. Identifying 
the graphs of these formulas required relating new forms of untaught 
sequence responses from a fairly detailed relational network of algebraic 
and trigonometric rules and their associated graphs on the coordinate axis. 
In the above formulas, three or more mathematical stimuli (signs, symbols, 
constants) interact within a specific context. For example, a negative sign in 
front of the radical (or log or sine function) causes the functions to shift 
downward, while a negative sign inside the radical (or log function) 
represents a reflection over in the y axis. Within the same examples, a 
constant inside the parentheses (i.e., 4) moves the function in the opposite 
direction along the x axis. Moreover, a negative or positive constant (i.e., 4 
or 6) placed outside of the radical or the parentheses causes the function to 
shift up or down the y axis. This contextual relation (Crel ) applies to the 
formulas and graphs of these functions within the very limited relational 
network we assessed in this study. 
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With the exception of the two exponential functions, the error pattern 
displayed by the SOM revealed that most participants were no more likely 
to miss novel functions (e.g., sine, cube, or log) tllan they were to miss 
square or square root functions when these functions were displayed in their 
most rudimentary configurations. Accordingly, training in Experiment 2 
emphasized changes in the square root functions relating to the effects of 
combinations of negative and positive signs in front of and inside the radicals 
in conjunction with positive and negative constants inside radical signs. 

Method 
Participants and setting. Of the participants in Experiment 1, 10 

served in Experiment 2. Participants 2, 9, 13, 6, and 15 were not included 
in Experiment 2, as they demonstrated perfect, or near perfect, 
acquisition of derived relationships during the first experiment. The 
remaining participants (11 , 4, 7, 14, 5, 12, 1, 3, 10, and 8) were invited to 
participate in a brief remediation session in which verbal instructions and 
computer-interactive tutorials were used to provide additional training in 
light of the types of errors classified by the SOM. This second experiment 
was conducted under the same conditions provided in Experiment 1. 

Design and procedure. A brief lecture was read from note cards, and 
all participants received the same rules for reflections and shifts in the 
square root functions relating to the effects of combinations of negative 
and positive signs in front of and inside the radicals in conjunction with 
positive and negative constants inside radical signs. As in the original 
instructional sequence in Experiment 1, the effects of constants 
positioned after the radical sign (or parentheses) were briefly reiterated. 
No other functions were discussed or trained in Experiment 2. 

Following the oral lecture, participants were reassessed for accuracy 
of problem solving according to the same MTS protocol implemented in 
Experiment 1. Thus, training and tests for mutual entailment only 
addressed more complex square root functions and a review of the 
original material provided in Experiment 1. As in Experiment 1, 
participants demonstrated mutual entailment between all formulas and 
their respective graph analogues before the computer allowed them to be 
reassessed for novel relations identified in Figure 8. 

Results 
Figure 11 shows reduction in participant errors following targeted 

treatments based on the SOM classification of errors. All participants 
demonstrated a reduction in errors relative to their performance in 
Experiment 1. 
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Errors of 10 Lowest Performing Participants After Treatment 2 
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Figure 11. Pattern of errors following interventions based on errors identified by the SOM. 
Incorrect items are shaded and contain Os. 

Discussion 

Brief instruction and MTS training aimed at a small set of formulas to 
graphs and graphs to formulas enabled participants to derive the 
relations for a series of complex combinations of formulas and their 
associated graphs. Novel relations entailed new multiple combinations of 
constants within parentheses and radicals with combinations of positive 
and negative signs in the prefix and postfix operations for more intricate 
algebraic and trigonometric functions. These results are consistent with 
RFT and stimulus equivalence studies demonstrating that training a small 
number of basic relations may generate the emergence of many more 
detailed relations beyond the specific trained relations. Even though this 
study did not test for the combinatorial mutual entailment or equivalence­
equivalence relations, the evidence suggests that learning a small 
number of relations and testing for the property of mutual entailment may 
be sufficient for generating enhanced relational networks (Stewart, 
Barnes-Holmes, Roche, & Smeets, 2001) . 

Because all of the mathematical formulas employed during this study 
have graphs that are transformations of the more basic graphs employed 
during training, it was possible for participants to derive the mutually 
entailed relations for complex variations of square, square root, 
exponential, cubic, and logarithmic functions. That is, for a vertical 
transformation , the addition of a positive number inside the parentheses 
or radical generates a shift up in the positive direction and subtraction of 
a constant moves the function down in the negative direction. For a 
horizontal transformation, the addition of a positive constant inside the 
parentheses (or radical sign) produces a shift in the negative direction, 
and the subtraction of a constant generates a shift in the positive 
direction. It is hard to imagine that a participant could make any of the 
above relevant discriminations with regard to new formulas and their 
respective patterns on the coordinate axes without employing specific 
mathematical rules. Indeed, the debriefing of all participants suggests 
that those who were able to clearly express the primary rules suppl ied 
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during training were more likely to perform efficiently. And, it appears that 
the ability to express these rules at least facilitated the development of 
the complex relational networks needed to perform these operations. By 
the end of Experiment 2, all participants were able to paraphrase the 
correct rules regarding the formula's influence on vertical and horizontal 
shifts and reflections in the x and yaxes. However, knowing these rules 
may not be sufficient to operate with them accurately. None of our pilot 
participants who were exposed to the same instructions were able to 
respond correctly to new formula-to-graph relations until they were able 
to consistently demonstrate the property of mutual entailment on similar 
types of functions. 

The elegance in many mathematical principles flows from the highly 
specific relational functions that are required; however, mathematical 
operations entail very few nonrelational functions. In this study, training 
participants to respond accurately to a relatively small number of stimulus 
sequences generated new combinations of more complex mathematical 
progressions. Our experimental preparations involved the relating of 
derived relational networks in the sense that participants had to add or 
remove particular elements such as negative or positive signs when 
particular types of formulas were presented on the computer screen . 
Thus, the transformation of mathematical functions in this study 
addressed Crel control and the relevant entailment process. It is not clear, 
however, that any of our procedures addressed contextual function 
(Cfunc) control or the transformation of nonrelational functions (D. Barnes­
Holmes, personal communication, April 30, 2003). 

It is possible that the immediate performance improvement of 
Participants 2, 9, 13, 6, and 15 may have been caused by some advanced 
training history prior to our investigation; however, discussion with these 
participants and pretesting suggest that they were unfamiliar with these 
concepts and were unable to demonstrate these similar types of 
discriminations prior to treatment. As a caveat, these relations were tested 
in only one direction. Subsequent research should assess derived relations 
in both directions. Nevertheless, all 15 participants were pretested, and none 
of the participants were able to successfully identify any of the algebraic 
formulas relative to their graphic representations. It is also possible that a 
practice effect may have beneficially influenced participants' performance 
during Experiment 2; however, pilot testing and retesting on the same math 
items has consistently failed to show any noticeable gains in subject 
performance unless specific rules regarding mathematical relationships are 
provided and MTS procedures are implemented. 

Our findings suggest that error patterns displayed by students are not 
caused by carelessness alone, nor are they exclusively a function of 
insufficient practice. Many students make incorrect inferences during 
instruction. Indeed, we have found that some incorrect problem-solving 
strategies may produce correct answers intermittently (See Ninness & 
Ninness, 1998, 1999, for a discussion). Under such conditions, many 
students become increasingly frustrated and confused. Our particular 
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neural net adaptation of the Kohonen SOM operates somewhat 
analogously to a descriptive analysis in that it identifies the conditions 
(types of problems) that are associated with errors and accurate 
mathematical discriminations. In doing so, it provides feedback to the 
software developer as to where more intensified and detailed tutorials are 
required. Of 15 participants, 10 needed supplemental training to derive all 
(or nearly all) relations successfully. Having access to a pattern of 
conceptual errors allowed us to intervene more efficiently. With the SOM, 
we were able to provide brief but specific remediations regarding 
interconnected items that our participants found particularly challenging. 

Future preparations might address combinatorial mutually entailed 
mathematical relationships that emerge from computer-posted 
instructions and enhanced MTS procedures. Our lab is focusing on the 
combinatorial mutually entailed properties of the standard forms of many 
complex formulas, the factored forms of these same formulas, and their 
mutual graph analogues. Similar investigations might survey the 
combination of new REP strategies in conjunction with artificial neural 
networks to design more effective web-based instructional platforms for 
training math skills. Rather than depending on student discovery of 
fundamental mathematical relationships, we should be able to provide 
online materials using new types of REPs to more efficiently train and 
assess student mastery of the primary relationship among a multitude of 
critical mathematical relationships. In circumstances where we have not 
provided adequate computer-interactive training regarding these 
relationships, the SOM might be able to provide feedback as to where the 
relationship among relationships is not emerging as anticipated and 
where better training protocols are needed. Such systems could allow 
students to develop the critical hierarchy of skills to more efficiently 
negotiate the space between graphs and formulas. 
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