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Using 3 diversified datasets, we explored the pattern-recognition ability of the 
Self-Organizing Map (SOM) artificial neural network as applied to diversified 
nonlinear data distributions in the areas of behavioral and physiological 
research. Experiment 1 employed a dataset obtained from the UCI Machine 
Learning Repository. Data for this study were composed of votes for each 
U.S. Representative on 16 key items during a particular legislative session. 
Experiment 2 employed a dataset developed in our human neuroscience 
laboratory and focused on the effects of sympathetic nervous system arousal 
on cardiac and inner-ear physiology. Experiment 3 employed the well-known 
Wisconsin Breast Cancer dataset, which was used to develop a sensitive, 
automated diagnostic method of distinguishing between malignant and benign 
cells. We suggest that the SOM is capable of identifying cohesive patterns of 
nonlinear measurements that would be difficult to identify using traditional 
linear data reduction procedures and that neural networks will be increasingly 
valuable in the analysis of a wide range of complex behaviors.
Key words: Self-Organizing Map, logistic regression, pattern recognition, 
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While data-mining and pattern-recognition procedures are being employed at an 
exponential rate within basic and applied research across the natural sciences (e.g., 
Garbolino & Taroni, 2002; Han & Kamber, 2006; Haykin, 2009; Heaton, 2008), in many 
cases it may be difficult for a researcher to identify an experimental preparation as a 
pattern-recognition/classification problem. According to James (1985), if a botanist has a 
special interest in nomenclature, it is apparent that his or her primary challenge involves 
locating the best measurement system for classifying a sample as a member of a new or 
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existing genus or species. In other types of inquiry, the strategies for employing correct 
classification may be less systematic. For example, our legal system is continually engaged 
in an attempt to identify culpability based on evidence. As James (1985) pointed out, in a 
particular murder case, the indicted suspect might receive a verdict indicating that he or 
she belongs within a classification called guilty, or the jury may deliver a verdict indicating 
that the individual belongs to a class of the innocent and is unreasonably accused by the 
state. In both circumstances, the objectives are to make the best decisions possible given 
the accessible evidence, and the outcomes can be thought of as forms of classification.

Within the behavioral and physiological sciences, single-subject data analysis, 
univariate statistics, and multivariate statistical analysis are all systems designed to help 
researchers make the best decisions possible given the evidence at hand (Ninness, 
Rumph, Vasquez, & Bradfield, 2002). Importantly, much of the evidence currently 
employed in an attempt to determine guilt or innocence in cases involving homicide is 
acquired by way of computerized pattern-recognition systems (Garbolino & Taroni, 
2002). Notwithstanding, in the physiological and behavioral sciences, where an 
abundance of highly diversified raw information is a continually growing trend, the 
sheer volume of the raw data is becoming problematic. With new computer technologies 
disseminating a barrage of new types of measurement outcomes, researchers are often 
confounded by a scarcity of appropriate scientific tools for analyzing complex and 
previously unseen data types. The ironic but inescapable fact is that a large portion of the 
data we obtain in an effort to solve our scientific problems has become a major part of 
those problems (Gigerenzer, 2004).

Traditionally, factor analysis (FA) and principal components analysis (PCA) have 
been the primary multivariate tools of choice for researchers attempting to classify 
extremely large multifaceted datasets (Cattell, 1966; Johnson & Wichern, 2003). 
According to Reusch, Alley, and Hewitson (2005), PCA produces a different but simpler 
set of orthogonal variables that best approximates the variance in the original 
multifaceted and undifferentiated dataset. FA and PCA share a common mathematical 
foundation; however, there are differences in how these techniques are utilized in 
practice. Research strategies that employ FA often assume that the covariation found 
within diversified measurements may be a function of one or more underlying “causal” 
components. Usually, PCA-oriented research makes no attempt to identify underlying 
hypothetical constructs or attribute causation to any of the identified components; PCA 
is almost exclusively a data-reduction procedure designed to classify the minimal 
number of orthogonal components sufficient to account for most of the variance within a 
data structure (Child, 1990).

To obtain optimal performance from FA and PCA procedures, input values should 
be composed of interval or ratio data points, all of which are obtained randomly and 
independently (Glass, Peckham, & Sanders, 1972), precluding the possibility that the 
acquisition of any data point has any influence on accessing any other data point 
(Rummel, 1970; Stevens, 2009). While PCA and FA certainly remain essential to the 
analysis of particular types of problems, their fundamental underlying assumptions 
suggest that complementary techniques might have special value in the analysis of new 
types of extremely diverse and nonlinear scientific measurements (Abdi, 2003; Reyment 
& Jöreskog, 1993). As emphasized by Reusch et al. (2005), Self-Organizing Map (SOM) 
analysis differs from FA and PCA in that this procedure does not entail assumptions 
regarding linearity of data points, nor does it require that measurements are obtained by 
way of a random and independent sampling of interval or ratio scaled data points.

Early adaptations of the original SOM were used to develop pattern-recognition 
systems aimed at such dissimilar applications as car navigation (Pomerleau, 1991), the 
identification and orientation of sensitive cells in the striate cortex (Von der Malsburg, 
1973), language processing with modular neural networks and distributed lexicon 
(Miikkulainen & Dyer, 1991), and the forecasting of earthquake aftershocks 
(Allamehzadeh & Mokhtari, 2003).
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The interested reader is referred to Haykin (2009) and Duda, Hart, and Stork (2001) 
for detailed mathematical descriptions of these and related neural networking 
computational procedures. The reader can also locate SOM software developed by SAS 
(http://www.sas.com/technologies/analytics/datamining/miner/index.html) or SOM 
software by IBM SPSS (http://www-01.ibm.com/software/analytics/spss/products/
statistics/neural-networks/). Alternatively, the reader may contact the first author for 
sample input data and a downloadable SOM application (Ninness, 2012) developed at the 
SFA Behavioral Software Design Laboratory, installable on Windows operating systems 
(see Appendix).

Even though SOM algorithms fall under the heading of unsupervised neural networks 
developed for the purpose of identifying concealed data patterns within chaotic or 
nonlinear distributions, finding a common input metric (scaling system) has been a 
continuing challenge in the general application of these algorithms. This is particularly 
true when the input data are composed of extremely diversified measurement metrics (e.g., 
blood pressure, intelligence, or body weight). Here, the output patterns showing common 
trends among different data types have been inconsistent or less impressive (e.g., 
Arciniegas-Rueda, Daniel, & Embrecths, 2001). In fact, to date, there is no generally 
accepted transformation strategy for scaling heterogeneous data types.

To address this issue, we have been working to make the SOM capable of converting 
raw scores to z scores, and the version we describe here is capable of analyzing diverse 
inputs in accordance with a user’s preference. If a given dataset is composed of different 
metrics, the most straightforward strategy is to transform all data to z scores and run the 
SOM analysis using z scores rather than raw scores. If the raw data is composed of binary 
values (e.g., voting for or against), raw scores can be converted to dummy/indicator 
variables.

As described previously, new computer technologies are inundating researchers with 
diversified and chaotic measurement outcomes (Kline, 2009). Thus, one of the studies in 
this article focuses on physiological data. These data are included to demonstrate the 
conceptual integrity and broad applicability of SOM neural network applications. In two of 
the studies presented, we attempted to make predictions based on logistic regression 
procedures.

The central restriction regarding multiple linear regression entails the assumption 
regarding a continuous dependent variable. Many interesting variables in the analysis of 
behavior and physiology are dichotomous or categorical. For example, public school 
students may attend or not attend classes, legislators may vote yea, nay, or present. A cell 
may be benign or malignant. A variety of regression techniques have been developed for 
analyzing data with different types of dependent variables, including multiple linear 
regression, discriminant analysis, and logistic regression. Logistic regression is 
traditionally employed when there are discrete classifications of the dependent variable.

Similar to multiple linear regression procedures, logistic regression calculates 
formulas for any dependent variable of interest and a series of b coefficients that indicate 
each independent variable’s weighted influence on the dependent variable under 
consideration. For a given categorical variable, an equation is created that includes all 
weighted predictor variables that are valuable in making this prediction. Two of the studies 
in this article move past pattern recognition into a logistic regression analysis in an attempt 
to develop prediction strategies.

Taken together, these three studies are intended as demonstrations of neural network 
pattern recognition capability when aimed at extremely dissimilar and nonlinear dependent 
variables. Such variables are not unlike those obtained in many current findings in 
behavior analysis (e.g., Ninness et al., 2005). We (Ninness et al., 2005) used an earlier 
version of this architecture in conjunction with our computer-interactive mathematic 
software to identify and remediate mathematical errors that occurred during computer-
based instruction. In the current study, we attempt to expand our previous neural network 
procedures.
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General Method
Using three challenging, nonlinear, and multifaceted datasets, we explored the 

pattern-recognition ability of the SOM neural network as adapted by Ninness and 
colleagues and applied it to datasets composed of qualitatively different scales. 
Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository 
(Frank & Asuncion, 2010) and was composed of votes for each of the U.S. 
Representatives on 16 key items during a particular legislative session. Experiment 2 
examined within-subject changes in a group of nine human physiological variables 
measured before, during, and after use of a cold pressor challenge. Experiment 3 was 
conducted with the well-known Wisconsin Breast Cancer dataset donated to the UCI 
Machine Learning Repository. These data were used to develop a sensitive, automated 
diagnostic method to distinguish between malignant and benign cells. As described on 
the UCI Machine Learning Repository homepage, the repository is composed of a 
collection of complex databases, domain theories, and data generators that are used by 
the statistical and machine learning community for the empirical analysis of machine 
learning algorithms (Frank & Asuncion, 2010). Given our research ambition to 
demonstrate the SOM neural network’s ability to identify and systematically organize 
irregular and extremely diverse measurements, these three datasets met our criteria for 
multidimensionality. Our immediate ambition for this study was to test our version of 
the SOM using these three dissimilar datasets in an effort to obtain output patterns 
that would be difficult to isolate and classify using traditional statistical procedures. 
Our long-term ambition was and is to further develop our version of the SOM such that 
it will not only identify nonlinear data patterns but will concurrently predict future 
behavioral and physiological outcomes using a logistic regression procedure in 
conjunction with our SOM neural network software. As per Hopkins, Hopkins, and 
Glass (1996), “the purpose of a regression equation is to make predictions for a new, 
but comparable, sample for which the scores on the independent variable are available” 
(p. 125). To employ logistic analysis with precision, sample size should be above 300 
(Stevens, 1996). The dataset from Experiment 2 was too small to allow prediction 
procedures; however, in Experiment 1, we used our version of the SOM in conjunction 
with logistic regression to predict the likelihood of particular votes being cast by 
members of the U.S. House of Representatives.

Using data from Experiment 3, we used the SOM in conjunction with a logistic 
regression procedure to predict the likelihood of particular cells being malignant or 
benign. While a multiple linear regression procedure can be employed when the outcome 
of interest can be measured on a linear interval or ratio scale, multiple logistic regression is 
the procedure of choice when the dependent variable is categorical or dichotomous. 
Logistic regression examines the weighted influence of independent variables by 
computing the probability of occurrence regarding a specific event. Logistic regression 
does not assume a linear association between the dependent and the aggregate of 
independent variables (Johnson & Wichern, 2003).

Experiment 1
According to details provided by Schlimmer (1987) and downloaded from the UCI 

Machine Learning Repository, this dataset entails 16 key votes made by members of the 
U.S. House of Representatives. These congressional votes were simplified to their basic 
tally format consisting of Yea, Nay, or Present.

Method
To change the raw data to a numerical format, Nay votes were converted to values of 

1, votes for representatives who were simply unavailable or votes cast as Present (to avoid 
conflict) were transformed to 1.5, and Yea votes were transformed to values of 2. The 
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congressional votes then took on numeric values that were equidistant and meaningful in 
the sense that the nonoccurrence of a vote, which may have been a function of a member’s 
attempt to avoid conflict or a member’s inability to be on location at a given point in time, 
had the effect of “splitting the weighted difference” between an affirmative and negative 
contribution to the group decision.

Results
After converting votes to numerical dummy scores and conducting SOM-based 

analysis, four distinct patterns emerged, as shown in Figure 1. Class 1 is a voting pattern 
representing 31.03% of all and 88.88% of the Republican House membership across all 16 
key legislative items. Class 2 is a pattern representing 24.03% of all and 85.8% of the 
Democratic votes. Class 3 is an SOM pattern representing 34.71% of all and 94.66% of the 
Democratic members of the House. With 9.88% of its total, Class 4 is poorly differentiated 
because it includes a combination of Republican and Democratic House members who 
exhibited inconsistent voting patterns.

Class 1 Class 2

Class 3 Class 4

94.66% Democratic (34.71% of all)

88.88% Republican (31.03% of all)

67.44% Democratic (9.88% of all)

85.8% Democratic (24.03% of all)
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Figure 1. SOM classifications of voting patterns. Four voting patterns emerged from the SOM analysis of 
435 Members of the U.S. House of Representatives on 16 key bills during the 98th Congress. 

Given a member’s voting record on this particular series of 16 key legislative items, it 
is possible to identify the individual’s party affiliation with a high level of accuracy. 
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Although members of both parties abstained on any given bill, and any member may have 
voted in favor or in opposition to a particular item, the three dominant voting patterns are 
identified by the SOM neural network. Data within Class 4 (approximately 10% of all) 
were ambiguous, and these data were extracted prior to developing prediction formulas 
(see Kuyuk, Yildirim, Dogan & Horasan, 2011, for a similar SOM filtering strategy 
employed by seismologists).

Employing the 392 well-classified data patterns within Classes 1, 2, and 3, a follow-up 
logistic regression identified the probability of particular members being affiliated with 
one party or the other. In Figure 2, the first 249 markers refer to Democratic members, 
while the remaining 143 votes were cast by Republican members. Based on three voting 
patterns classified by the SOM, we identified party affiliation for 98.2% (385/392) of 
legislators within these three neural-network-defined classes as described in the logistic 
regression procedures that were computed on psyNet Software (Ninness, 2012) and 
matched SPSS calculations (where p = .0000) as follows:
z = − 26.032 + 0.4723x1 − 0.978x2 − 5.157x3 + 14.029x4 + 4.458x5 − 5.154x6 + 8.219x7 
− 1.166x8  − 2.133x9 + 3.866x10 − 3.296x11 + 0.259x12 − 0.903x13 + 2.537x14 − 1.345x15 + 
1.379x16

1 + e− z

1
Prob = (1)
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Figure 2. Logistic regression identified the probability of 392 House member party affiliations based 
on voting patterns identified by the SOM. The first 249 votes were cast by Democratic House 
members, and the remaining 143 were cast by Republican House members.

Figure 3 shows the series of actual votes for each House member as a heavy dark line 
where a Nay vote is located along line 1, the nonoccurrence of a vote, or a vote of Present, 
falls at 1.5, and Yea votes are shown along line 2. The probability of each of the 392 
legislators voting for Key Bill Number 4 (Adoption of the Budget Resolution) using the 
logistic regression formula (where p = .0000) is the following: Based on three voting 
patterns classified by the SOM, we predicted the voting patterns for 97.44% (382/392) of 
legislators within these three neural-network-defined classes, as described in the logistic 
regression formula:
z = −16.5393 − 0.956x1 + 1.694x2 + 0.253x3 + 1.533x4 + 0.004x5 − 1.421x6 + 0.095x7 + 1.110x8 − 
0.558x9 + 0.374x10 + 1.232x11 + 1.353x12 + 0.206x13 + 0.406x14  − 1.930x15 + 8.394x16
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Clearly, we could not have used SOM unless we already knew the information that we 
sought to predict in the regression equation. The first 233 votes were recorded as Nay, 
followed by 6 Present votes located at 1.5, and the remaining 153 indicated votes 
recorded as Yea. Markers showing the voting predictions for each House member are 
based on the classification of voting patterns within parties as identified by the SOM and 
subsequently predicted by logistic regression.
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Figure 3. Logistic regression–based probability of 392 House members voting Nay, Present, or Yea 
on Key Bill Number 4. The first 233 votes (located at 0) show actual votes recorded as Nay, the 
next 6 (located at 0.5) indicate a vote of Present, and the remaining 153 (located at 1) are votes 
recorded as Yea. 

Experiment 2
The second experiment employed a single-subject design to determine the existence of 

coordinated effects of sympathetic nervous system activation on certain physiological 
aspects of the heart and the inner ear. The study was employed using the cold pressor test 
(placing one hand up to the wrist in ice water for a brief period), which is an established 
means of noninvasively activating the sympathetic nervous system (cf. Robertson, 2004), 
along with a variety of dependent variables related to cardiac and inner-ear function. Tests 
were conducted in the Human Neuroscience Laboratory at Stephen F. Austin State 
University, following guidelines from the Auditory Cross-Section Test Battery (AXS; 
Lauter, 2000), and employing an A-B-A design during which the participant was exposed 
to four prepressor blocks, followed by three blocks of pressor challenges, and ending with 
four postpressor blocks.

Method
During each of the series of 11 test blocks (approximately 1 min each), the subject sat 

quietly in a comfortable chair while a Marshall blood pressure cuff was used to collect 
three dependent variables representing cardiac function: diastolic blood pressure, systolic 
blood pressure, and heart rate. At the same time, during each of the blocks, an Otodynamics 
computer system was used to collect five dependent variables of inner-ear physiology, as 
reflected in different aspects of transient evoked otoacoustic emissions (TEOAEs; cf. Dhar 
& Hall, 2009): two measures of the overall response amplitude (coded as response and X 
[mean] response), a variability measure comparing overall response amplitude in 
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back-to-back single-click trials (coded A-B), and the amplitude of response analyzed in 
frequency bands centered around 1 kHz, 2 kHz, and 3 kHz. The dataset for this subject (3 
cardiac variables and 5 ear variables for each of 11 test blocks) was transformed to z scores 
and analyzed for pattern recognition by the SOM neural network. One graduate student 
served as the participant in this experiment. A preliminary SOM analysis was conducted 
to see how the output would appear in the absence of transformation of z scores.

Results and Discussion
Outcomes derived from raw data showed extremely wide dispersion among the 

variables in the construction of the SOM feature map. In the absence of SOM-based 
analyses, outcomes did not demonstrate any form of recognizable data patterns or any clear 
differentiation among variables. After converting all data to z scores and entering the data 
into the SOM network, several classifications were identified, while one category (response 
amplitude at 2 kHz) was unique. In order to show the cohesive flow of data, A-B-A phase 
lines are not displayed before and after the cold pressor test condition; however, Figure 4 
shows that the two classes containing more than one function grouped the following 
variables: (a) Class 1: all three cardiac measures, together with two TEOAE measures 
(A-B and 3 kHz response amplitude) and (b) Class 2: three TEOAE measures (response, X 
response, 1 kHz response amplitude). Class 3, amplitude of 2 kHz of TEOAE, is a unique 
but well-differentiated dependent variable.

Class 1: First, all three cardiac measures showed increases during cold pressor, which 
is consistent with previous findings (cf. Robertson, 2004), which demonstrates that this 
challenge is an effective activator of the sympathetic nervous system. Second, the SOM 
associated the TEOAE variability function (A-B) with the three cardiac measures, 
suggesting that increases in blood pressure may be causally related to increases in run-to-
run variability in cochlear responsivity. Such a finding is consistent with the well-
established dependence of the highly vascularized cochlea on the biophysics of its blood 
supply (Dallos, 1996). Thus, in this case, perturbations in blood pressure associated with 
sympathetic arousal may be reflected in TEOAE variability. Third, the increase in response 
amplitude at 3 kHz during cold pressor may be related to the tonotopic nature of the basilar 
membrane within the cochlea. That is, parts of the basilar membrane closer to the basal 
end of the cochlea (which is more narrow and thicker than areas tuned to lower frequencies) 
may be more sensitive to blood pressure changes.

Class 2: The association of three of the TEOAE measures (response, mean response, 
and response amplitude at 1 kHz), and the fact that they all involved a decrease in response 
amplitude, may reflect the action of a central physiological process recruited to reduce the 
response to peripheral pain (in this case, when one hand is placed in ice water). The 
observation of decreased amplitudes in at least some TEOAE measures suggests that this 
central sensory-reduction process has global effects and is not limited to the pain-related 
somatosensory system. Finally, as indicated above, Class 3: amplitude of the 2-kHz 
TEOAE, is a unique but well-differentiated dependent variable.

Experiment 3
The third study focused on the identification of breast cancer cells computed by way 

of digitized images of cell nuclei. The original Wisconsin Breast Cancer dataset was 
donated to the UCI Machine Learning Repository. Wolberg (1992) provided the samples 
from his clinical cases from the University of Wisconsin Hospitals (Wolberg, Street, 
Heisey, & Mangasarian, 1995). These data have been used in statistical analyses and 
neural network research to develop a sensitive, automated diagnostic method to distinguish 
between malignant and benign cells that would be less intrusive than surgical biopsy (e.g., 
You & Rumbe, 2010). As described by Wolberg et al. (1995), variable attributes in the 
database were computed from the digital images of the fine needle aspirates (FNA) of 
breast masses to describe the characteristics of the cell nuclei in the images among 
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All Input Variables as z Scores

Heart Rate, Both Types of Blood Pressure, TEOAE Repeatablity, 
Amplitude of 3-kHz Component of TEOAE
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Figure 4. The physiological data for a single subject are shown as z scores. The x-axis represents 
time, with four pre-cold-pressor blocks (1–4), three cold-pressor blocks (5–7), and four post-cold-
pressor blocks (8–11).
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569 participants. The cytological characteristics of breast FNA variables included 10 
primary variables calculated for each cell nucleus. Specifically, these included the, “radius 
(mean of distances from center to points on the perimeter), texture (standard deviation of 
gray-scale values), perimeter, area, smoothness (local variation in radius lengths), 
compactness, concavity (severity of concave portions of the contour), concave points 
(number of concave portions of the contour), symmetry, fractal dimension (of the 
boundary)” (Demyanov, Bagirov, & Rubinov, 2002, p. 77).

Method
Prior to transformation to z scores, we attempted to run a SOM analysis. Outcomes 

derived from raw data showed extremely wide dispersion among the variables in the 
construction of the SOM feature map. In the absence of transformation to z scores, 
outcomes did not demonstrate any form of recognizable data patterns or any clear 
differentiation between benign and malignant cells. When the 569 data points were 
converted to z scores and reanalyzed by the SOM neural network, several well-
differentiated patterns emerged.

Results and Discussion
SOM outcomes revealed that 70.31% of the cases were classified in accordance with 

cells being benign or malignant. Figure 5 illustrates SOM classifications. Since we had 
access to the follow-up outcomes based on surgical biopsy, we were able to verify the 
accuracy of all predictions. Specifically, Class 1 (12.5% of all data) was composed of 100% 
benign cells. Class 2 (32.51% of all data) was composed of 96.7% benign cells, and Class 3 
(25.3% of all data) was composed of 99.3% malignant cells (cf. Demyanov et al., 2002). As 
shown in Figure 5, class differentiation appeared to be based on five key variables: worst 
radius, mean texture, standard error of the local variation in radius lengths, standard error 
of concave points, and mean of the three largest concave points. Arrows within Class 3 in 
Figure 5 point to these variable locations, which contrast with the same locations within 
Class 1 and Class 2 of this figure. Class 4 was composed of an almost even distribution of 
benign and malignant cells; thus, data within this class were excluded from post-hoc 
analysis. Figure 6 illustrates the risk of malignancy based on a logistic regression 
employing the 406 cases that fell within Classes 1, 2, and 3. Logistic regression procedures 
were computed on psyNet Software (Ninness, 2012) and SPSS. Both statistical packages 
produced the following multiple regression formula:
z = 487.248 − 59.057x1 − 57.599x2 − 2.549x3 + 2.966x4 − 70.406x5

(2)
1 + e−z

1
Risk =

In Figure 6, a false positive prediction falls above 0.5 on the y-axis (and a false 
negative falls below 0.5 on the y-axis). Following SOM analysis, logistic regression 
generated an overall 99.51% level of accuracy with only two false positive and no false 
negative predictions. The above outcomes compare favorably with other machine learning 
studies predicting breast cancer based on FNA findings (Dutra et al., 2011).

To be clear, logistic regression was employed to confirm that the SOM had succeeded 
in clustering cases in a manner which allowed us to exclude cases that were statistically 
noisy. We could not have used SOM unless we already knew the information that we 
sought to predict in the regression equation. Notwithstanding, classification of a new or 
existing case might be conducted in two parts. Given a previously unexamined case 
obtained by FNA containing 30 real-valued input features, these variables could be entered 
into the existing database, preprocessed to z scores, and analyzed for classification by the 
SOM neural network. If the case fell into a pattern consistent with any of the three 
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Figure 5. The Wisconsin Breast Cancer dataset following transformation data of all 569 cases 
to z scores. 
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Figure 6. Risk of malignancy based on SOM neural network analysis and logistic regression.
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well-differentiated groups (and this would be expected to occur approximately 70.31% of 
the time), the data could be further analyzed by way of logistic regression.

Summary and Concluding Discussion
In Experiment 1, Republican and Democratic Congressional votes originally tallied 

and recorded in the forms of Y, ?, or N were converted to a numerical scale as indicator/
dummy variables (Draper & Smith, 1998; Roscoe, 1975). Using this indicator scale, we 
transformed Nay votes to numerical values of 1, votes from representatives who were 
simply unavailable or votes cast as Present (to avoid conflict) were transformed to 1.5, and 
Yea votes were transformed to values of 2.

 The voting records classified as undifferentiated (9.88%) were extracted from the origi-
nal dataset, and a follow-up logistic regression was conducted. As a result, party affiliations, 
as well as the probability of particular legislators voting for or against a key piece of legisla-
tion were predicted accurately. In Experiment 2 we examined within-subject changes in a 
group of nine physiological variables observed before, during, and after exposure to a cold 
pressor challenge, and clearly defined classifications emerged across conditions. In 
Experiment 3 we addressed cell diagnostics. SOM outcomes revealed that 70.31% of the 
cases were classified in accordance with cells being benign or malignant. Class 1 was com-
posed of 100% benign cells. Class 2 was composed of 96.7% benign cells, and Class 3 was 
composed of 99.3% malignant cells. Subsequently, multiple logistic regressions produced an 
overall 99.51% level of accuracy (cf. Paulin & Santhakumaran, 2009).

The SOM is capable of isolating/classifying data clusters with cohesive topological 
features that are critical to solving a very wide range of problems. During SOM analysis, a 
particular class may emerge as unified and well differentiated from other classes; however, 
the class may be functionally irrelevant to a particular problem at hand. For example, 
Kuyuk et al. (2011) employed a SOM in their classification of earthquakes and found 
approximately 6% of classifications contained unified topological features. These data 
were equivocal and extracted (filtered) from their prediction model. Kuyuk et al. describe 
this model as extremely robust and sufficiently reliable for laboratory practice in the 
forecasting of seismic events.

In Experiment 1 of this study, 9.88% of the Congressional voting data were extracted 
from the original dataset prior to making accurate predictions. In Experiment 3, 29.7% of 
the Wisconsin Breast Cancer dataset formed a nonlinear classification of cells, but this 
particular class did not differentiate between benign and malignant cells. Thus, these data 
were extracted prior to generating predictions by way of logistic regression. In these 
experiments, the a priori extraction of topologically similar but functionally irrelevant 
classes allowed logistic regression to be employed with greater precision (see Rousseeuw 
& Leroy, 2001, for a discussion of robust regression procedures). Removing unreliable or 
irrelevant classes/clusters could be construed as a less than desirable approach to making 
important predictions regarding future events; however, in many studies there may be 
considerable strategic advantage in systematically filtering unreliable or irrelevant classes 
within a dataset. One can make extremely broad spectrum but less precise and less reliable 
predictions based on employing all available data, or one can extract a class known to be 
composed of irrelevant outcomes and proceed toward making more accurate but qualified 
predictions based on SOM pattern recognition (cf. Allamehzadeh & Mokhtari, 2003).

While many classification/pattern recognition studies may not lend themselves to logis-
tic regression, other types of research may be informed by these techniques. For example, 
given a sufficiently large database, predicting subtle physiological changes that accompany 
exposure to cold pressor (Experiment 2) might lead to several important neuroscience predic-
tions. While acknowledging that our research in the area of predicting voting behavior, and 
the likelihood of cells being benign or malignant is in the preliminary stages of development, 
it appears that further investigation in this area is warranted. Given the predictions in the 
article, forecasting party affiliations (Experiment 1), as well as the probability of particular 
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legislators voting for or against key pieces of legislation, could be a subject of some value and 
interest. Likewise, the accurate prediction of cells as benign or malignant (Experiment 3) 
may well have implications for future investigations (Abbass, 2002). In total, these findings 
may contribute to future behavioral/physiological investigations.

We should point out that the SOM neural network classification thresholds are 
“adjustable.” That is, although the fundamental algorithm is a constant, the SOM’s 
classification threshold can be set to various levels of sensitivity in order to identify 
increasingly inconspicuous pattern formations within a nonlinear dataset. This is true for 
all neural networks (Behnke, 2003; Heaton, 2008); interestingly, it is consistent with the 
way in which factor analysis operates. For example, orthogonal rotations sustain the 
original perpendicular relations among all components on the coordinate axes, whereas 
oblique rotations do not require that factors sustain their orthogonal relations (Abdi, 2003; 
Rummel, 1970; Stevens, 2009). While FA and PCA remain essential to the analysis of a 
wide range of problems, their fundamental underlying assumptions suggest that 
complementary techniques might have special value in the analysis of new types of 
extremely diverse and nonlinear scientific measurements (Reusch et al., 2005).

As a prospect for ongoing research and related software development, we continue to 
expand our development of neural network functionality in conjunction with traditional 
data reduction procedures such as principal components analysis. Our ambition is to 
generate better functionality, user interactivity, and develop our software’s ability to 
accurately recognize and predict a wider range of critically important outcomes within the 
behavioral and physiological sciences. The extent to which we are able to demonstrate 
increasing levels of precision remains an empirical question.
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Appendix
The interested user can download our version of the Self-Organizing Map  

(http://www.faculty.sfasu.edu/ninnessherbe/chris_ninness.htm) by clicking on the 
SOM_2012.zip link located near the top of our webpage. After downloading the zipped file 
(which includes the SOM and a sample dataset) to your desktop, right click the folder, 
“extract all,” and deploy. Only the cyan-colored buttons are relevant to this study.  
The screen shot below is an illustration from Microsoft Office 2010. Other versions of 
Office may appear slightly different; however, the operations described below will be 
exactly the same. Please contact the first author (cninness@sfasu.edu) if instillation or 
other complications should occur.

1. Make sure your dataset is saved as a CSV file.

2. Open the psyNet application on your desktop and click Kohonen SOM z-Attributes.
 
3. For the sample data provided, enter 4 into the textbox labeled Cols, and 150 into the 
textbox labeled Rows.

4. Click Kohonen SOM z-Attributes. At this point, a window will open and you will be 
able to select your dataset, which must already be saved in CSV format (see Step 1).

5. Double click the icon containing your CSV dataset.
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6. At this point, you will be able to see the SOM output data within the psyNet listbox on 
the left side of the application. 

7. Click on Save Outcome CSV File. Another window will open. Type in a new file name. 
Give this CSV extension a name that you can easily locate. Usually, it is helpful to save 
this new file to your desktop. Again, make sure the file is saved in the CSV format. 

8. Close the psyNet application and open your new CSV file.

9. You will see an Excel Spreadsheet in CSV format with numbers in columns. The 
sequence of data points are identified in Column A in the same order in which these data 
were entered into the program. Column B identifies the class names generated by the SOM 
for each vector in this particular dataset. These classes (identified by numbers) are arbitrary 
and change each time the SOM application is employed. 
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10. Highlight all columns and rows except those with “0” so that all data in these columns 
are shaded/grayed out.

11. Once highlighted, click Data on the tab at the top of your Excel toolbar, then click Sort. 
A window will open. Click Sort by and select Column B. Then, click OK.

12. Your data is now sorted by numerical class name. Column B represents the specific 
classifications within this dataset. From here you can begin creating graphs for each 
classification identified by the SOM.

13. Position your cursor in the first row of Column B containing data. Highlight all data 
until the category changes, including the associated columns. (For example, your 
highlighted range might be B1…F50.)
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14. Once your data is properly highlighted, click Insert at the top of the screen, under 
Review select Line, and choose a 2-D line graph. 

15. Click Switch Rows/Columns.

16. Repeat the previous steps for each remaining category (Column B).

If you were to run the Iris dataset a second time (with LL at 3), the class names would 
change; however, the composition of each of the SOM classes will remain exactly the 
same.
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